
Automated Virtual Machine Introspection

for Host-Based Intrusion Detection

THESIS

Brett A. Pagel, Captain, USAF

AFIT/GCE/ENG/09-07

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCE/ENG/09-07

Automated Virtual Machine Introspection

for Host-Based Intrusion Detection

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Brett A. Pagel, B.S. Computer Engineering

Captain, USAF

March 2009

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/09-07

Abstract

This thesis examines techniques to automate configuration of an intrusion de-

tection system utilizing hardware-assisted virtualization. These techniques are used

to detect the version of a running guest operating system, automatically configure

version-specific operating system information needed by the introspection library,

and to locate and monitor important operating system data structures. This re-

search simplifies introspection library configuration and is a step toward operating

system independent introspection.

An operating system detection algorithm and Windows virtual machine system

service dispatch table monitor are implemented using the Xen hypervisor and a mod-

ified version of the XenAccess library. All detection and monitoring is implemented

from the Xen management domain. Results of the operating system detection are

used to initialize the XenAccess library. Library initialization time and kernel symbol

retrieval are compared to the standard library. The algorithm is evaluated using nine

versions of the Windows operating system. The system service dispatch table monitor

is evaluated using the Agony and ProAgent rootkits.

The automation techniques successfully detect the operating system and system

service dispatch table hooks for the nine Windows versions tested. The modified

XenAccess library exhibits an average initialization speedup of 1.9. Kernel symbol

lookup is 10 times faster, on average. The hook detector is able to detect all hooks

used by both rookits.

iv

Acknowledgements

I would like to thank Bryan Payne for starting the XenAccess project. Without

this library, my research would have been much more difficult. I would also like to

thank my advisor, committee members, and fellow students for helping me through

the research process. Last, but not least, I would like to thank my wife for her love,

support, and encouragement.

Brett A. Pagel

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

Table of Contents . vi

List of Figures . ix

List of Tables . xi

List of Abbreviations . xii

I. Introduction . 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Thesis Layout . 2

II. Background Research . 3

2.1 Virtualization . 3
2.1.1 Paravirtualization 4
2.1.2 Binary Translation 5

2.1.3 Hardware-Assisted Virtualization 6
2.1.4 Xen Virtual Machine Monitor 8

2.2 Windows Data Structures 10
2.2.1 Microsoft Portable Executable and Common Ob-

ject File Format 10

2.2.2 System Service Dispatch Table 12

2.2.3 Process and Thread Lists 12
2.3 Malware . 14

2.3.1 Rootkits . 15
2.3.2 Hooking . 16

2.3.3 Direct Kernel Object Manipulation 19

2.4 Software Host-Based Intrusion Detection 20
2.4.1 Data Collection 20
2.4.2 Data Classification 21
2.4.3 Host-Based IDS Limitations 23

2.5 Hardware Host-Based Intrusion Detection Methods . . . 25
2.5.1 CuPIDS . 25
2.5.2 Co-Pilot . 27

2.6 Virtual Machine Introspection 28

vi

Page

2.6.1 Explicit Information Introspection 28

2.6.2 Implicit Information Introspection 31

2.7 Summary . 34

III. Methodology . 35

3.1 Problem Definition . 35
3.2 Goals . 35
3.3 Approach . 36

3.4 Experimental Design . 37

3.4.1 Operating System Detection 37

3.4.2 SSDT Location and Hook Detection 42
3.5 Summary . 47

IV. Results and Analysis . 48

4.1 Results and Analysis of Experiments 48

4.1.1 Operating System Detection Analysis 48

4.1.2 SSDT Location and Hook Detection Analysis . 53

4.2 Overall Analysis . 55

4.3 Limitations . 55
4.4 Summary . 56

V. Conclusions . 57
5.1 Research Conclusions . 57
5.2 Research Impact . 58

5.3 Recommendations for Future Work 58
5.3.1 Version Specific Operating System Offsets . . . 58

5.3.2 OS Data Structure Monitoring 59

5.3.3 System Call Interposition 59

5.3.4 Linux OS Detection 59
5.4 Summary . 59

Appendix A. Symbol Lookup Data 60

Appendix B. Windows Operating System Data Structures 72

B.1 EPROCESS Structure for Windows XP SP2 72
B.2 KPCR Structure . 78
B.3 DBGKD GET VERSION64 Structure 78
B.4 KDDEBUGGER DATA64 Structure 79

vii

Page

Appendix C. Building the Test Platform 82

C.1 Install Fedora 8 . 82
C.2 Install Xen 3.1.4 . 82
C.3 Configuring Xen Boot 83

C.4 XenAccess . 84
C.5 Creating a HVM DomU for Xen 84

Bibliography . 85

viii

List of Figures
Figure Page

2.1 Intel 4-Ring Protection Model 3

2.2 Virtualization Protection Model 4

2.3 Binary Translation Versus HAV Nanobenchmarks 6

2.4 VM Guest Interaction Life Cycle 7

2.5 Xen 3.0 Architecture . 10

2.6 Windows XP SP2 Dump & PE File Format 11

2.7 System Service Dispatching . 13

2.8 Process and Thread Lists . 13

2.9 Malware Taxonomy . 15

2.10 A User-Space Inline Hook Example 17

2.11 System Service Dispatch Table 18

2.12 Race Exploit . 24

2.13 CuPIDS Architecture . 26

2.14 Livewire Architecture . 29

2.15 VMWatcher Architecture . 31

2.16 Lares Architecture . 32

2.17 x86 Virtual Address Translation 33

3.1 OS Detection Process . 39

3.2 Shadow SSDT Location . 44

4.1 Comparison of Initialization Times - 95% Confidence Interval . 50

4.2 Average CPU Ticks for Kernel Symbol Lookup 53

A.1 Symbol Lookup Comparison for Windows 2000 SP4 63

A.2 Symbol Lookup Comparison for Windows XP 64

A.3 Symbol Lookup Comparison for Windows XP SP1 65

A.4 Symbol Lookup Comparison for Windows XP SP1a 66

ix

Figure Page

A.5 Symbol Lookup Comparison for Windows XP SP2 67

A.6 Symbol Lookup Comparison for Windows XP SP3 68

A.7 Symbol Lookup Comparison for Windows 2003 69

A.8 Symbol Lookup Comparison for Windows 2003 SP1 70

A.9 Symbol Lookup Comparison for Windows Vista Business . . . 71

x

List of Tables
Table Page

3.1 XenAccess Required Data Structure Information 37

3.2 Operating System Base Addresses 41

3.3 Agony Rootkit Options and Hooked System Calls 46

4.1 Operating System Detection Results 49

4.2 1-sample t-Test for Initialization Time Comparison 51

4.3 Hooks Detected for Agony Rootkit 54

4.4 Hooks Detected for ProAgent Rootkit 55

A.1 1-Sample t-Test of Symbol Lookup Times - Standard Library . 61

A.2 1-Sample t-Test of Symbol Lookup Times - Modified Library . 62

xi

List of Abbreviations
Abbreviation Page

OS Operating System . 1

HAV Hardware-Assisted Virtualization 1

VMM Virtual Machine Monitor 3

VM Virtual Machine . 4

AMD Advanced Micro Devices 6

VT Virtualization Technology 6

SVM Secure Virtual Machine 6

VMX Virtual Machine Extensions 6

VMCS Virtual Machine Control Structure 7

PE Portable Executable . 10

COFF Common Object File Format 10

DLL Dynamic Link Library . 10

SSDT System Service Dispatch Table 12

GDI Graphics Device Interface 12

DKOM Direct Kernel Object Manipulation 15

API Application Programming Interface 16

IAT Import Address Table . 16

EAT Export Address Table . 16

IDT Interrupt Descriptor Table 18

MSR Model Specific Register 19

IRP Input/Output Request Packet 19

IDS Intrusion Detection System 20

NIDS Network Intrusion Detection Systems 20

HIDS Host-Based Intrusion Detection 20

FSA Finite State Automation Machine 22

xii

Abbreviation Page

PC Program Counter . 22

CuPIDS Co-Processor-Based Intrusion Detection System 25

MMU Memory Management Unit 31

TLB Translation Lookaside Buffer 32

ASID Address Space Identifier 32

LRU Least Recently Used . 52

xiii

Automated Virtual Machine Introspection

for Host-Based Intrusion Detection

I. Introduction

1.1 Motivation

The privilege level structure of computer hardware and software creates a battle

between malware writers and security researchers for control of the system. Programs

with higher privileges, whether malicious or not, have visibility into and can control

programs with lower privileges. Typically the programs that run at the highest privi-

lege level are the operating system (OS) kernel and its components. Malware exploit-

ing the kernel or its components can gain access to this level. Once the malware is

running at the highest privilege level it can modify data and mask its presence from

the kernel. The introduction of hardware-assisted virtualization technology provides

yet another level for malware and security software to contend for.

Hardware-assisted virtualization (HAV) technology introduces a new highest

level in the privilege hierarchy. This level is more privileged than the operating

system kernel and any kernel-mode malware that might infect it. This advantage

can be used to develop a secure monitor to detect malware. This new level in the

privilege hierarchy also introduces its own set of challenges. The separation and

isolation provided by HAV creates a “semantic gap” that makes it difficult interpret

the memory of lower privilege levels [CN01].

Bridging the semantic gap requires detailed knowledge of the OS structure. For

closed-source operating systems, this information can be difficult to obtain and may

change with patches, updates, or new versions. One method of bridging the semantic

gap, virtual machine introspection, is implemented by the XenAccess library [PCL07].

The library requires detailed OS knowledge via a configuration file and system map

file. Additionally, it must scan memory to locate the base address of the kernel. This

1

research aims to streamline XenAccess library configuration and use it to implement

secure monitoring for operating system data structures using HAV.

1.2 Goals

Configuring of a virtualization-based security monitor for several different op-

erating systems can be difficult and tedious. Version-specific information must be

obtained and cataloged for each operating system version. The goal of this research

is to automatically configure the XenAccess library and use it to monitor specific OS

data structures from the Xen management domain. In order to achieve this goal, the

following obstacles must be overcome:

• Detect the Guest Operating System

• Identify Version-Specific Offsets

• Locate OS Data Structures to Be Monitored

The ideal solution to this goal would be a security application that can monitor any

operating system and automatically monitor any important data structure. To limit

the scope of the problem, this research concentrates on the Windows operating system

as it has an 88.7% operating system market share [App08]. Moreover, only support

for monitoring the system service dispatch table is implemented because it is exploited

in approximately 50 percent of malware attacks [KS07, Rie06]. Techniques used by

forensic researchers and malware writers are used to overcome these obstacles.

1.3 Thesis Layout

This chapter introduces the research motivation and goals. Chapter 2 discusses

relevant research accomplished by others and background information. Chapter 3

describes the methodology for the experiments conducted for this research. Chapter

4 discusses experimental results and analyzes their outcomes. Finally, Chapter 5

provides a concluding discussion of this research and gives recommendations for future

work.

2

II. Background Research

This chapter introduces research accomplished by others and fundamental concepts

relevant to virtualization, host-based intrusion detection, and operating systems.

First, Section 2.1 describes and compares several virtualization methods. Section 2.2

details important Windows operating system data structures. Section 2.3 defines mal-

ware and discusses their methods. Sections 2.4 and 2.5 present software and hardware

host-based intrusion detection system technologies. Section 2.6 explores the topic of

virtual machine introspection.

2.1 Virtualization

Virtualization provides an additional layer of abstraction beyond the Intel 4-

ring protection model shown in Figure 2.1 [Cor08a]. In the Intel protection model,

ring 0 is the most privileged level and is typically where the operating system kernel

resides. User-level applications usually run at level three, the least privileged level.

As shown in Figure 2.2, the new layer provided by virtualization resides below ring

0 and therefore at a higher privilege level. This new level interacts directly with

hardware while providing an interface to ring 0 that is nearly indistinguishable from

the standard hardware interface. This interface is implemented in a virtual machine

monitor (VMM), or hypervisor. These can be complex programs that perform many

Figure 2.1: Intel 4-Ring Protection Model [Cor08a]

3

Figure 2.2: Virtualization Protection Model

functions to interact with hardware and the OS or very lightweight with minimal

functionality and less chance for exploitable software bugs [Rut08].

The addition of the VMM layer increases security by isolating the operating

system within a virtual machine (VM). This separation also allows for the VMM to

run multiple VMs at the same time while keeping them isolated from each other.

The VMM controls what each operating system is allowed to access and arbitrates

any interaction between them. Server virtualization is becoming increasingly popular

because of this ability to consolidate several software services onto a single hardware

system. The following paragraphs, discuss the different types of virtualization and

their tradeoffs.

2.1.1 Paravirtualization. Paravirtualization requires modifying operating

system source code to replace privileged function calls with appropriate substitutes

that result in a call to the VMM. This technique allows for the most flexibility because

any potentially unsecure calls or instructions can be redirected. Moreover, additional

functionality, such as VMM to OS communication, can be added as necessary. The use

of paravirtualization requires modification to the guest operating system because the

VMM does not reproduce the full functionality of the underlying hardware [BDF+03].

The major benefit of a paravirtualization is that because the OS must be modified, the

4

system can be designed to increase performance and to bridge the “semantic gap” by

providing explicit information to the VMM which is identical to that within the OS.

Jones calls this “the gold standard of OS information within a VMM,” but cautions

that this is not a secure means of obtaining OS information because a compromised

OS can report false information [JADAD06].

2.1.2 Binary Translation. Binary translation is used by commercial virtual-

ization products from VMWare. Unlike paravirtualization, the operating system code

does not have to be modified to cooperate with the hypervisor. Virtual CPU state is

maintained separately from physical CPU state. When translating the binary instruc-

tions, the translator can intercept privileged instructions and replace them with the

appropriate instruction referencing virtual data structures, but allows non-privileged

instructions to execute unmodified. In addition to privileged instructions, Adams and

Agesen list three other instruction types that need to be translated to maintain con-

trol of the guest operating system. These include program counter relative addressing,

direct control flow, and indirect control flow [AA06]. These instruction types must

have their branch targets translated to the correct address.

The translation process is efficient because the majority of code does not need

to be modified and can be sent to the processor as is. The amount of overhead is

dependent on how many instructions need to be translated to a different instruction(s).

Adams and Agesen measure the slowdown caused by a software VMM using binary

translation and a hardware-assisted virtualization VMM relative to native execution.

When executing the SPECint 2000 benchmark, the software VMM and hardware-

assisted VMMs have an average slowdown of 4% and 5% respectively [AA06]. SPECint

2000 is largely user-level code and therefore only incurs a small overhead. Adams and

Agesen also developed seven “virtualization nanobenchmarks” to measure overhead

caused by instructions or sequences of instructions that require VMM intervention.

Figure 2.3 compares native, software VMM, and hardware-assisted VMM execution

time of the seven benchmarks. In Figure 2.3 the number of execution cycles for native,

5

Figure 2.3: Binary Translation Versus HAV Nanobench-
marks [AA06]

software VMM, and hardware-assisted VMM execution are represented by gray, white,

and black respectively. Overall, the software VMM using binary translation executes

slower than native, but is faster for two of the nanobenchmarks due to a more efficient

process than with native execution.

2.1.3 Hardware-Assisted Virtualization. While software designers have de-

veloped very capable suites for virtualization, many have been developed with an

emphasis on performance and consolidation and do not necessarily concentrate on

security. This section discusses hardware that has evolved from the lessons learned

and shortfalls of software virtualization. Intel and Advanced Micro Devices (AMD)

have extended their x86 architectures with hardware virtualization instructions. The

hardware extensions from both manufacturers eliminate the need for the techniques

used by software virtualization, such as binary translation and paravirtualization. In

contrast to software virtualization where either the VMM must intercept instructions

or the operating system must be modified to deprivelege privileged instructions, with

Intel Virtualization Technology (VT) and AMD Secure Virtual Machine (SVM) the

instructions are intercepted by hardware.

2.1.3.1 Intel Virtualization Technology. The Intel VT architecture is

based on virtual machine extensions (VMX) that introduce ten VMX instructions to

6

Figure 2.4: VM Guest Interaction Life Cycle [Cor08a]

the Intel 32-bit instruction set [Cor08b]. With VMX, two new CPU modes are defined-

VMX root and VMX non-root. The intent of the designers is for the VMM to run at

VMX root and for guest operating systems to run at VMX non-root. Additionally,

in both VMX root and VMX non-root, the processor can run in any of the four

privilege levels, but they are independent of each other. Ring 0 in VMX non-root

is less privileged than Ring 0 in VMX root, and any privilege level changes in VMX

non-root mode may cause a VM exit for servicing by the VMM.

VMX is enabled or disabled using the VMXON or VMXOFF instructions as

illustrated by the VMM life cycle shown in Figure 2.4 [Cor08b]. After VMX mode

is enabled, the processor transitions from root to non-root mode during virtual ma-

chine entry and exits. The VM can make service calls to the VMM via the VMCALL

instruction, causing a VM exit. Execution in VMX non-root mode and VMX transi-

tions are governed by the virtual-machine control structure (VMCS) until the VMM

issues a VMXOFF instruction. The VMCS is referenced with a physical address for

efficiency and contains six logical sections of control data for the VM [UNR+05]. The

sections are guest state, host state, VM-execution control, VM-exit control, VM-entry

control, and VM-exit information [Cor08b]. The VMCS can be read and written to

using the VMREAD and VMWRITE instructions.

The guest state section of the VMCS contains register state and non-register

state values: Activity State, Interruptibility State, Pending debug exceptions, and

the VMCS link pointer. Guest state information is loaded from the guest state sec-

7

tion on every VM entry and saved for VM exits [Cor08b]. The host state section

contains specific register values to restore the state of the processor whenever a VM

exit transitions the processor back to VMX root mode [Cor08b]. The VM-execution

control section details how interrupts and exceptions should be handled. In addi-

tion, it contains several bitmaps that define what should and should not cause a VM

exit [UNR+05]. The VM-entry and VM-exit control sections of the VMCS define

the basic operation of VM entry and exits. Finally, the VM-exit information section

contains information about the most recent VM exit, such as the reason for exiting.

2.1.3.2 AMD Secure Virtual Machine. The AMD SVM is very sim-

ilar to Intel’s VT. SVM provides a set of hardware extensions for virtualization and

security. The parallel to VT’s root and non-root mode is host and guest mode in

AMD’s SVM. Also, AMD’s documentation refers to VM entry and VM exit as world

switching [AMD08]. The processor enters guest mode by executing a VMRUN.

SVM defines a Virtual Machine Control Block similar to VT’s VMCS that

regulates how each VM functions. The VMCB is a fixed length of 2,564 bytes and

contains control and state information for the associated VM [MY07]. The VMCB

can be modified using the VMSAVE and VMLOAD instructions. The control section

contains the intercept vector which tells which instructions will cause a #VMEXIT

as well as rules for interrupts and exceptions. The state section of the VMCB stores

register contents and other state information for the guest VM. Finally, like VT,

an EXITCODE is stored telling the VMM why the guest caused an exit to host

mode [AMD08].

2.1.4 Xen Virtual Machine Monitor. Xen is a virtual machine monitor

that originated from the XenoServers project at the University of Cambridge [vH08].

The initial public release of Xen, version 1.0, is a paravirtualization-only VMM. Xen

contains a management domain 0, or dom0, that relieves the VMM of high level

VM management tasks and controls “their associated scheduling parameters, physical

memory allocations and the access they are given to the machine’s physical disks and

8

network devices.” [BDF+03] Xen paravirtualized guest OSes must be modified such

that all interaction with hardware is conducted through the VMM. Device drivers are

replaced with Xeno-Aware drivers that interface the VMM and privileged instructions

within the OS are paravirtualized with calls to the Xen hypervisor. The cost of making

these changes to the guest OSes is 2,996 and 4,620 lines of code for Linux and Windows

respectively [BDF+03].

With the release of Xen 3.0, hardware virtualization instructions are supported.

This allows Xen to run unmodified operating systems reducing the overhead of par-

avirtualization and enabling the use of closed-source OSes. Hardware-assisted vir-

tualization is accomplished by running the Xen VMM in VMX root mode and the

guest OS in VMX non-root mode. Instructions that were paravirtualized previously

will cause a VM-exit to the VMM when executed by a guest OS. Additionally, the

VMM emulates devices for the guest OS so that specialized Xen device drivers are

not necessary [PFH+05].

Figure 2.5 demonstrates the capabilities of the Xen 3.0 architecture. Domain 0

is the trusted domain handling communication between the hypervisor and untrusted

VMs. It contains native device drivers with direct access to hardware. VM 1 is a

trusted VM that has been given special access to the hardware via the hypervisor.

VM 2 is a symmetric multiprocessor paravirtualized guest OS that has been modified

to work with the Xen hypervisor. Finally, VM 3 is an unmodified Windows XP

operating system using HAV. The arrows demonstrate how the domain 0 and trusted

VM 1 arbitrate communication with the hardware for the other VMs.

In the 6 years since Xen 1.0 was released it has become a popular virtualization

platform. It is used by thousands in both academia and the commercial sectors [vH08].

Commercial versions exist that provide virtualization solutions to corporations, but

the Xen project is still an open source venture supported by programmers from over

20 well known information technology corporations [CS09]. The availability of source

code makes Xen an attractive choice for research.

9

Figure 2.5: Xen 3.0 Architecture [ADC05]

2.2 Windows Data Structures

Operating systems contain many important data structures that directly control

execution and are therefore targets for malicious code. In order to protect them, their

function must be thoroughly understood. The following sections describe the structure

and function of Windows OS data structures commonly exploited by malware.

2.2.1 Microsoft Portable Executable and Common Object File Format. The

Microsoft Portable Executable (PE) and Common Object File Format (COFF) is

used by executable files, dynamic link libraries (DLL), and device drivers for Win-

dows operating systems [Cor08d]. Files that follow this specification have a defined

structure that can be used to interpret them both on disk and in memory. Figure 2.6

presents the specified structure of a PE file with a memory dump of the first 656 bytes

of the Windows XP Service Pack 2 kernel executable for illustration. The base of the

image header begins with the hex bytes 0x4d5a, or “MZ” in ascii. Additionally, the

PE header offset, highlighted in white with the value 0xe8, is always located at 0x3c

and points to the location of the PE header further in the file. A valid PE image

10

Figure 2.6: Windows XP SP2 Dump & PE File Format

begins the PE header with the 4-byte signature of “PE\0\0”, as seen in the first four

bytes of the middle box. The PE header contains machine type information, section

information, symbol information, size of the optional header, and file attribute flag

information. Windows executables also contain an optional header appended to the

PE header. The optional header begins with the “magic” hexadecimal number 0x10b

for a PE32 executable, such as ntoskrnl.exe. The information of interest in the

optional header is the data directory information. This gives the location and size of

tables used by the image during execution. The resource table is of specific interest

for identifying the operating system version [Car07]. Additionally, the export table

contains names and pointers to all of the functions exported by the image.

Following the PE header are the section headers, in the bottom and lightest

gray box, containing name, size, and location information for each section contained

in the file. The resource and export table addresses are duplicated in section headers

and can be compared to those from the data directory for integrity.

11

2.2.2 System Service Dispatch Table. The system service dispatch table

(SSDT) is used to hold addresses of Windows system call functions in order for the

system service dispatcher to find and execute system services belonging to the kernel,

Ntoskrnl.exe. Additionally, a shadow SSDT exists that holds addresses of Win-

dows window manager and graphics device interface (GDI) services exported from

Win32k.sys [RS04]. Figure 2.7 illustrates how a Windows system call is made from

an application. The application calls the Kernel32.dll function, WriteFile, which

calls the Windows specific Ntdll.dll subsystem function, NtWriteFile. Next, a soft-

ware interrupt is generated using the SYSENTER or SYSCALL instruction on Intel or

AMD architecture, respectively.1 This prompts a transition to kernel mode where

the service number argument passed from above is translated into the address of the

Ntoskrnl.exe version of NtWriteFile using the SSDT. Finally, the NtWriteFile pro-

cesses the service request and the call is complete. The right side of Figure 2.7 depicts

a call to a GDI or window manager service and is similar to a kernel dispatch except

that it does not involve Kernel32.dll because Win32k.sys is inherently Windows

specific. Also, the shadow SSDT is used to look up the service function. The struc-

ture of this process makes it vulnerable to attack and is discussed in further detail in

Section 2.3.2.2.

2.2.3 Process and Thread Lists. Processes and threads in Windows are

represented by data structures called executive process and thread blocks, referred to

as _EPROCESS and _ETHREAD in the kernel debugger. These structures contain infor-

mation about each process or thread and pointers to other necessary data structures.

These structures are linked together in memory by pointers called the flink and blink.

Once a single process block is found, the list of processes can be traversed to enumer-

ate all running processes on the system. Figure 2.8 shows how the lists are connected

and related. The ThreadListEntry field of each process points to its list of threads.

Detailed information about the _EPROCESS structure is contained in Appendix B.

1INT 0x2e is used on processors prior to the Pentium II

12

Figure 2.7: System Service Dispatching [RS04]

Figure 2.8: Process and Thread Lists

13

2.3 Malware

One major benefit of using virtualization for intrusion detection is that, except-

ing a flaw in the VMM itself, it isolates the VMM from malware running on a guest

OS. The mechanisms in the hardware that control transitions from root to non-root

provide an isolated execution environment for each VM that is running on the host

system. Any communication in or out of an individual VM is handled by the VMM

and subject to its controls. In order to understand the vulnerabilities of operating

systems it is necessary to understand the different types of malware and methods used

by malware to infect an operating system.

Figure 2.9 shows an adaptation of Rutkowska’s malware taxonomy [Rut06]. The

figure shows the four different types of malware and where they reside with respect

to other common memory structures. The large boxes represent processes with the

largest one at the top being the system process, or kernel. The gray boxes represent

the code and data sections of each process in memory with arrows representing hooks

planted by malware to jump to the malware code. Hooking and its different imple-

mentation methods are discussed in Section 2.3.2. The black boxes represent malware

and are classified based on their location.

Type 0 malware is a malicious program; acting on its own without help from

or modification to the operating system or other processes. Type I malware modifies

the static code sections of processes or the operating system, whereas type II malware

modifies dynamic data sections. Finally, type III malware is introduced as malware

that resides outside of any process or the operating system’s memory space [Rut06].

Malware Types 0, I, and II may be able to detect a VMM [GAWF07], but are not

allowed to affect the VMM because of hardware protections that cause a VM exit and

return control to the VMM. However, type III malware can affect the VMM by modi-

fying the system BIOS or exploiting a bug in the VMM. Some type III malware exists,

such as Bluepill and Vitriol [Rut07b, Zov06], but the millions of malware signatures

that commercial antivirus programs use are for Type 0, I, or II malware [Sym08].

14

Figure 2.9: Malware Taxonomy adapted from Rutkowska [Rut06]

This means a VMM-based intrusion detection system is protected by hardware from

most types of malware and can potentially detect malware of types 0, I, and II.

2.3.1 Rootkits. Rutkowska’s taxonomy classifies malware based on where

they reside in the system whereas Skoudis [SZ03] takes a more functional approach

dividing them into 8 categories based on function. Among those categories are user-

level and kernel-level rootkits. Rootkits can be classified as type I or type II malware.

Skoudis defines them as “Trojan horse backdoor tools that modify existing operating

system software so that an attacker can keep access to and hide on a machine.” [SZ03]

In other words, the user-level or kernel-level components that are used to carry out

basic operating system functions are modified by rootkits for malicious purposes.

Hooking and Direct Kernel Object Manipulation (DKOM) are used by rootkits to

alter operating system function and are discussed in the following sections.

15

2.3.2 Hooking. One method that rootkits rely on to ensure their code is

executed is by using hooks. In short, hooks are redirections of execution caused by

replacing an address or piece of code within a process’ memory space or an operating

system data structure. Hooks can either be in user space or kernel space and allow a

malicious piece of code to alter what is seen by the user.

2.3.2.1 User or Application Programming Interface Hooks. Applica-

tion Programming Interface (API) hooks, though easier to detect than kernel hooks

because they do not run in ring 0, can be useful. In order for malicious code to install

API hooks, it must first have access to the process’ memory space. This is typically

accomplished using code or DLL injection [HB05]. Once attached to the process,

the malicious code can modify the import address table (IAT), export address table

(EAT), or install inline function hooks as described below:

• IAT and EAT Hooks

As described in the Microsoft PE and COFF specification, Windows executables

and libraries must contain import and export information so that functions can

be shared between them. At load time, any libraries that functions are being

imported from are loaded into the process’ memory along with the executable.

During this process, the IAT of the executable is also loaded with the appro-

priate addresses for each imported library function. IAT and EAT hooking is

accomplished by modifying the tables that hold the addresses of these imported

or exported functions. When a hooked imported function is called, execution

will be redirected to the hook function instead of the actual library function.

• Inline Hooks

Inline function hooking works by overwriting the first five bytes of a victim

function with a jump to the address of the rootkit code. This is possible because

most Windows functions after Windows XP SP2 contain a common five-byte

preamble. The process is slightly more difficult with versions before SP2 that

only contain a three-byte preamble, but still possible by simply saving and

16

Figure 2.10: A User-Space Inline Hook Example [Rie06]

overwriting the two bytes following the preamble [HB05]. Listing II.1 shows the

code bytes and assembly commands they represent for both preambles.

Listing II.1:

;SP2 and Later Pre -SP2

8bff mov edi , edi 55 push ebp

55 push ebp 8bec mov ebp , esp

8bec mov ebp , esp

The five bytes that are overwritten are saved and become part of a trampoline

function that allows the victim function to execute and then returns execution to

the rootkit code. At this time, the rootkit can modify the results returned by the

victim function before they are returned to the calling application. Figure 2.10

gives a visual representation of the process.

2.3.2.2 Kernel Hooks.

• System Service Dispatch Table Hooks

SSDT hooking replaces the address of the system call functions in the SSDT

with addresses pointing to a hook function. Figure 2.11 shows how a SSDT hook

intercepts execution and is able to filter data returned by the system call. The

17

Figure 2.11: System Service Dispatch Table [RS04]

system service dispatcher uses the table to look up the appropriate system call

address which has been replaced by a hook function address. The hook function

can then call the real system service and filter results or simply return anything

to the calling function. SSDT hooking is similar to IAT or EAT hooking in

user-space except that the SSDT is a read-only kernel data structure. In order

to modify values in the SSDT the rootkit has to bypass memory protections

placed on the table. This can be done by clearing bit sixteen, the write protect

bit, of the CR0 register or by creating a memory descriptor list with flags that

allow writing to the region containing the SSDT [HB05]. In addition to their

use by malware, SSDT hooks are used by many personal security products to

enable operating system monitoring.

• Interrupt Descriptor Table (IDT) Hooks

As mentioned in Section 2.2.2, system calls on legacy hardware generate a soft-

ware interrupt via the INT 0x2e instruction. Handling this interrupt requires

looking at entry 0x2e in the IDT for the address of that interrupt handler.

Therefore, replacing the IDT entry at 0x2e with the address of a hook function

causes that function to run whenever any system call is made. Figure 2.7 can

be used to illustrate the effect of an IDT hook. An IDT hook causes execution

18

to be redirected during the software interrupt preventing KiSystemService, the

real INT 0x2e handler from being called. Each CPU in a system maintains

an IDT and the address can be found by executing the SIDT instruction. Any

entry in the IDT can be replaced allowing an attacker to intercept execution for

events such as page faults in addition to system calls. One drawback to using

IDT hooks is that execution does not return to the interrupt handler. In the

case of hooking 0x2e, this means that execution does not return to the hook

function and that it cannot be used for modifying data, only blocking it.

• SYSENTER Hooks

On Pentium II processors and above, the SYSENTER instruction is used to execute

a fast system call. SYSENTER redirects execution to the address contained in the

Model Specific Register (MSR), IA32_SYSENTER_EIP [Cor08c]. An attacker can

read and write the value in this register from ring 0 using the RDMSR and WRMSR

instructions. This enables an attacker that has obtained access to ring 0 to

redirect execution to any arbitrary address.

• Input/Output Request Packet (IRP) Function Table Hooks

When a driver is loaded, a table containing the addresses of all the functions it

uses to handle IRPs is initialized. IRPs hold information needed by the system

to process I/O requests. A rootkit can replace entries in the IRP function table

and control the results of these I/O requests. This hooking method is useful for

intercepting network traffic as demonstrated by Hoglund [HB05].

2.3.3 Direct Kernel Object Manipulation. Using DKOM a rootkit can affect

some of the same changes made by altering execution with hooking. DKOM relies on

precise information about important operating system data structures. The Windows

process list described in Section 2.2.3 is one example of a kernel object that is vul-

nerable to DKOM. A rootkit can use DKOM to change the Flink and Blink pointers

in this list such that certain processes are unlinked from the list and will be hidden.

19

Additionally, DKOM can be used to hide device drivers, hide ports, elevate privileges

and skew forensics [HB05].

2.4 Software Host-Based Intrusion Detection

The basic intrusion detection system (IDS) needs three components to function

properly. The system first needs to use some sort of sensor to collect data. Second,

the system has to classify or determine if the data obtained exhibits malicious activity.

Finally, it needs to act on that determination and report an intrusion. These apply to

all types of intrusion detection systems regardless of their design. Intrusion detection

systems can be distributed or contained on a single machine, with the latter being

the more prevalent [HFS98]. Network intrusion detection systems (NIDS) are used to

monitor network traffic between multiple computers while host-based intrusion detec-

tion systems (HIDS) monitor multiple data on one specific machine, such as network

traffic, operating system data structures, or system calls. This research focuses on

host-based intrusion detection because of the advantages that can be afforded to it

by virtualization.

2.4.1 Data Collection. When collecting data one must first determine what

data is beneficial for intrusion detection. There has been much research on using

system call traces as indicators of intrusion [HFS98, SYfZ+05, FS08,YA04,YXS+05,

WD01]. System calls run at the highest privilege level in the kernel and therefore

are a desirable target for attackers that want to gain privileged access to the system.

System call monitoring simply observes the flow of system calls. In contrast, with

system call interposition, execution can be redirected based on some criteria. For the

purposes of this discussion, system call interposition and system call monitoring are

used interchangeably because many of the same collection techniques apply whether

interposing or simply monitoring the flow of system calls.

Several methods exist to intercept system calls. Utrace, strace, and the built-

in ptrace are all Linux tools that can be used to capture system calls [McGb,McGa].

20

System call monitoring or interposition has also been implemented as a loadable Linux

kernel module with Janus, BlueBox, and Systrace [Gar03,CC03,Pro03].

While system call interposition provides a useful indication of intrusion, it is also

susceptible to mimicry and concurrency attacks [Pro03,Wat07]. Additionally, most

research abstracts away the difficulty and overhead of interposing on system calls;

these are discussed in more detail in Section 2.4.3. In addition to system calls, other

OS data structures like those discussed in Section 2.2 along with files, directories,

processes, and kernel-level modules can also be useful [JWX07].

2.4.2 Data Classification. Once data is obtained it needs to be classi-

fied as malicious or normal. This problem is the center of much research, though

there are basically two techniques: signature-based (misuse-based) classification and

anomaly-based classification. Signature-based classification requires the construction

of a database of known malicious signatures. Anomaly-based classification establishes

a baseline of behavior that is considered normal and uses statistical analysis to detect

when behavior deviates from normal.

Signature-based detection is commonly used for antivirus software and net-

work intrusion detection. These programs require significant maintenance to keep up

with the release of hundreds of exploits and vulnerabilities released monthly [Sec08].

Symantec Antivirus contains definitions for 1,854,843 threats and risks [Sym08], and

Snort, a popular open-source NIDS, has a database of approximately 13,000 rules for

detecting intrusions [Sou].

A large body of research has been directed toward anomaly-based systems.

Hofmeyr, et al. were the first to investigate system call anomalies for intrusion de-

tection [HFS98], but many have followed using differing techniques. Many of these

techniques were studied by Yasin [YA04] and are described here.

21

• N-Gram Sequence of N System Calls

This method, developed by Hofmeyr et al. examines sequences of system calls

and compares them to a profile of “normal” behavior. The research showed that

“normal” profiles were distinct for different applications and that it was possible

to detect abnormal behavior using the sequences [HFS98].

• Finite State Automation Machine (FSA)

A FSA is created under normal process execution using the program counter

(PC) from which the system call is made as each state and the system call

name as the transition. Detection is accomplished by looking at the PC from

which the call is made and determining if there is a matching transition from

the current state to the new state [SBDB01]. One benefit of this approach over

N-Gram is that it captures short and long-term correlations and the effects of

loops and branches.

An alternate approach to the work of [SBDB01] that claims to address some of

their limitations is proposed by Yu, et al [YXS+05]. Their approach uses the

return address in the function stack as the state transition with no meaning

assigned to the states. Similar to the FSA of Sekar, et al., if a particular

transition is not present in the FSA an intrusion is detected. This method

is immune to the recursive call and dynamically linked executable problems

encountered by the N-Gram method.

• Static Analysis

This technique uses static analysis of system calls in program source code to

model “normal” program behavior. Wagner and Dean [WD01] present four

modeling methods to specify correct program behavior. Their models consist of

a trivial model that establishes a white list of allowed system calls, a callgraph

model based on the control flow of system calls, an abstract stack model that

uses information from the system call stack, and a digraph model that is similar

to the N-gram approach. Dynamic monitoring is used to determine if there is

22

a departure from normal program operation, as defined by the model. Wagner

and Dean claim the callgraph model does not generate false alarms. However,

the run-time overhead for their system varies widely from less than one second

to greater than one hour [WD01].

• Virtual Path Model

The Virtual Path model is based on the interpretation of virtual paths between

system calls. These paths consist of the return addresses of functions called in

between the system calls. This model builds two data structures during training;

the return address table and the virtual path table. The return address table

contains entries for all return addresses contained in the call stacks of system

calls. The virtual path table contains all virtual paths that are generated during

normal execution. Detection is accomplished by extracting the current call stack

and comparing return addresses to the return address table and virtual paths

to the virtual path table. This model is also able to handle recursive calls and

dynamically linked executables [FKF+03].

2.4.3 Host-Based IDS Limitations. There are many ways system call traces

are used to detect intrusions, but their limitations are well documented [Gar03,

Chu06]. One straightforward method to avoid detection is for an attacker to dis-

cover an allowed sequence of system calls that accomplishes his or her intent [WS02].

This “mimicry attack” takes advantage of the fact that many HIDS discard the pa-

rameters given to each system call and keep only the system call trace. As long as the

attacker does not modify the sequence of system calls when inserting parameters the

attack will remain undetected. Moreover, the permission level at which the system call

interception runs in many implementations is a security issue. The system call traces

provided by user-level tools are susceptible to modification by other processes or false

reporting from a compromised kernel. Watson describes a concurrency vulnerability

exploit for sysjail, an application based on the Systrace framework [Wat07]. Fig-

ure 2.12 shows how an attacker could take advantage of a concurrency vulnerability

23

Figure 2.12: Race Exploit [Wat07]

and use a race condition to change the arguments passed to the system call after it

has already been checked by the monitor. First, the original IP address is set by the

user. Then, Systrace copies the address argument for system call monitoring. Next,

before the system call executes the address argument is replaced by another user

from another processor. Finally, the bind() system call copies the altered argument

undetected by Systrace.

Many system-call-monitoring IDSes are “I/O-data-oblivious”, meaning they do

not monitor I/O operations, which results in their vulnerability to persistent inter-

position attacks [PSJ08]. Persistent interposition attacks inject code using I/O oper-

ations without altering the control-flow or other system call arguments. While this

stealth technique does not result in something as useful as a root shell, it does allow

an attacker to modify data on the target without changing anything that would be

detected by a system call monitoring IDS. Additionally, if the attacker managed to

avoid detection while gaining access, the IDS could simply be turned off since it runs

in the compromised kernel.

24

Finally, all of the system call monitoring HIDSs that have been presented are

designed for Linux. Unfortunately, to port these to Windows would be a daunting

task. Several issues make this problem more difficult in Windows [Chu06]:

• System call interfaces are undocumented and inconsistent

• Many Linux system call functions are provided from within user space in Win-

dows

• Extensive use of dynamically linked libraries makes creation of “normal” difficult

• Intercepting thread context switching would be complex

2.5 Hardware Host-Based Intrusion Detection Methods

Hardware-based intrusion detection and integrity monitoring technologies have

been investigated to support or replace software-based techniques. These typically

involve the use of specialized hardware to interface or monitor some portion of the

system. Using hardware makes the IDS much less vulnerable to any software-based

attacks. However, the process of interfacing with the data that needs to be monitored

adds to the complexity.

2.5.1 CuPIDS. The Co-Processor-Based Intrusion Detection System (Cu-

PIDS) architecture is based on parallel monitoring of a production process on one

processor by a shadow process on a separate processor [Wil05]. CuPIDS combines

both software and hardware architecture components to achieve this monitoring. Fig-

ure 2.13 shows an overview of the CuPIDS software architecture. The items on the

left edge of the figure are the CuPIDS monitors running on the shadow processor. The

remaining elements represent production units running on the production processor.

The overlap of the production and shadow units demonstrates the shadow monitor’s

ability to monitor both passively and interactively the different components of the

production units. The CuPIDS architecture includes several features that enable

its monitoring capabilities. Among these are: secure inter-CuPIDS communication,

25

Figure 2.13: CuPIDS Architecture [Wil05]

the ability to map virtual memory of a monitored process and interrupt and signal

interception [Wil05].

The numerous parallel monitoring capabilities of CuPIDS mean that it is able to

detect abnormalities within the system as they occur. Moreover, security is handled

exclusively by the CuPIDS shadow process allowing for more complicated detection

processes that might not be possible on a single-processor system. One drawback of

CuPIDS is the loss of an entire CPU to security monitoring. Quad core processors

are commonplace today and processors with more cores are on the horizon. If this

architecture could be adapted to multi-core processors this loss could become much

more tolerable. The communication between the production and shadow process is

also of some concern because it relies on the kernel not being compromised. As

suggested by Williams, an architecture similar to CuPIDS could be developed using

a VMM or separate OS [Wil05].

26

2.5.2 Co-Pilot. Integrity checking via a coprocessor allows for an efficient

means to verify host integrity while having minimal impact on host performance.

Copilot, developed by Petroni, et al. [JFMA04], is a coprocessor-based Linux kernel

integrity monitor implemented using a PCI add-in card. The system detects kernel

level rootkits comparing known-good MD5 hashes of important kernel data structures

with those that it reads at runtime.

Petroni et al. define the following conditions that need to be met to successfully

monitor host system memory:

• Unrestricted access to the full range of host system’s main memory

• The monitor should be non-disruptive and invisible to the host system to the

maximum degree possible

• The monitor should be completely independent from the host system

• The monitor should have sufficient processing power

• Provide the monitor with sufficient memory resources

• Utilize out-of-band reporting for secure communication with the administration

station

Many of these requirements can be applied to a VMM-based IDS. Despite meet-

ing all of their requirements for memory monitoring, the Copilot system still has some

limitations. The system is only a passive monitor and cannot interpose on the func-

tions of the host system. A byproduct of only having access to the host through direct

memory access is that it cannot see kernel locks and may read data structures while

they are being modified. This race condition could affect the ability of the system

to monitor dynamic kernel data structures. Moreover, the current implementation

only checks integrity every thirty seconds. This is more than enough time for an

attack to cause damage to the system before it is detected [Mot07]. Also, the monitor

is susceptible to relocation attacks that hide malicious code somewhere other than

main memory, such as the cache. Finally, Rutkowska outlines an attack technique us-

27

ing memory-mapped I/O and the host system’s Northbridge that effectively disables

PCI-based host memory acquisition like Copilot’s [Rut07a].

2.6 Virtual Machine Introspection

The isolation provided by virtualization increases the security of applications

running in different virtual machines and the virtual machine monitor. The low level

system access of the VMM has a side effect that makes monitoring and understanding

operating system level abstractions difficult. This gap between the VMM and the

internal operating system state, such as process information or disk structures, is

referred to as the “semantic gap” [CN01].

Explicit and implicit information are two ways to overcome the semantic gap

between VMM and OS. Explicit information is obtained with the cooperation of the

guest OS. This requires modification of the kernel or detailed knowledge of the kernel

data structures. This information is not always available or its structure may change

from version to version [Jon07]. Moreover, this information cannot be trusted because

a compromised guest OS could report incorrect or incomplete information. From the

perspective of security, implicit information is more trustworthy because it is simply

observed from outside of the VM instead of relying on the guest OS to report it.

Implicit information is gained from analyzing architectural events as well as the raw

memory and disk structures within the guest OS.

2.6.1 Explicit Information Introspection. Most methods used to extract

explicit information make use of known structure and location of OS data structures.

Information can also be obtained from debugging symbol information such as that in

the system.map file in the Linux OS. Closed-source operating systems and structure

differences from version to version can make it difficult to maintain programs that

obtain data with this method. Despite this difficulty many systems make use of

explicit information because of the accuracy and timeliness it provides.

28

Figure 2.14: Livewire Architecture [GR03]

2.6.1.1 Livewire. Garfinkel and Rosenblum have developed Livewire,

a VM-based intrusion detection system, that uses kernel debugging information to

locate and read OS data structures [GR03]. Figure 2.14 illustrates the Livewire ar-

chitecture. The architecture consists of a VMM interface, OS interface library, and a

policy engine. The VMM controls the interaction of these three components.

In the case of Livewire, the OS interface library is what bridges the semantic

gap. The VMM’s view of memory is similar to that given by /dev/kmem from within

Linux. This allows Garfinkel and Rosenblum to use crash, a crash dump examination

tool, to read OS data structures from within the VMM. Crash requires that the kernel

is compiled with debugging information enabled so the OS data structures can be

resolved from raw memory [Lin].

Livewire’s policy engine resides in a virtual machine and relies on the OS in-

terface library and a policy framework to communicate with the monitored VM and

the VMM respectively. Actions of the policy engine are based on several polling and

event-driven policy modules. These modules determine when the policy engine will in-

fluence execution of the monitored VM. The policy framework controls the monitored

VM via mechanisms provided by the VMM interface.

29

The VMM interface is composed of three types of commands:

• Inspection Commands - Allows the IDS to obtain VM state

• Monitor Commands - Allow event driven notification

• Administrative Commands - Allow IDS to control monitored VM

Garfinkel and Rosenblum acknowledge several weaknesses of the Livewire sys-

tem. The weakness most relevant to this research is their discussion of fooling or

compromising the OS interface library. The explicit information that the OS inter-

face library relies on assumes that data structures in the monitored OS are consistent

with a standard template. An attacker could modify the location of important kernel

data structures so that they are inconsistent with the IDS information and therefore

changes are undetectable. Moreover, a denial of service attack on the OS interface

library is possible, though Livewire mitigates this problem by running the library in

a separate process and monitoring its execution.

2.6.1.2 VMwatcher. A second VM-based introspection architecture

based on guest view casting is VMwatcher, developed by Jiang et al. [JWX07]. The

architecture runs the guest operating system on top of a VMM running in a host OS.

Commercial malware detection utilities are run “out-of-the-box,” meaning they reside

in the host OS rather than the guest OS being monitored [JWX07]. Figure 2.15 shows

the VMwatcher architecture. Guest view casting is used to overcome the semantic

gap by reconstructing the guest OS memory structures and virtual disk structures.

The detection utilities are able to monitor the guest OS while being isolated in the

host OS.

Semantic view reconstruction of both guest memory and virtual disks is accom-

plished using knowledge of their structure definitions and function semantics. File

system structure is obtained from the virtual disks using the open source Linux de-

vice drivers and file system drivers. Guest OS data structures in memory are obtained

by combining addresses from the OS symbol information and what is known about

30

Figure 2.15: VMWatcher Architecture [JWX07]

the translation from physical to virtual address within the VM. The data structure

assumptions made by VMwatcher make it vulnerable to the same relocation attacks

as Livewire.

2.6.1.3 Lares. The Lares architecture is based on the Xen hypervisor

with a specially designed virtual machine introspection library called XenAccess. In

addition to a security monitoring VM, the Lares architecture adds hooks into the guest

operating system to allow for active monitoring for malware or intrusions [PCSL08].

The guest OS is instrumented with jumps in strategic locations, such as program

code, jump tables or other important structures. Figure 2.16 shows the Lares archi-

tecture. These hooks redirect execution to an embedded trampoline in the guest OS.

This trampoline securely transfers information to the security monitoring VM via the

hypervisor. Upon receiving information from the trampoline, the security VM uses

an introspection API to obtain additional information about the state of the guest

OS based on the needs of the security application. The hooks and trampoline are

protected from malicious code in the guest OS by a memory protection component

in the hypervisor. This component marks the memory location of hooks as read only

causing a trap to the hypervisor if an access is attempted.

2.6.2 Implicit Information Introspection. Implicit information is gleaned

from what is known about the system architecture. Interactions with specific struc-

tures in the architecture, such as registers, I/O subsystem or the memory management

unit (MMU). This information does not depend on the OS and would be difficult for

31

Figure 2.16: Lares Architecture [PCSL08]

a compromised OS to spoof. However, it is not without its limitations. Due to

the methods used to obtain implicit information it is not likely that a VMM could

produce all useful OS structures this way. Moreover, Jones demonstrated that im-

plicit information sometimes suffers from delays and in some cases produces incorrect

information [Jon07].

2.6.2.1 Antfarm and Lycosid. One source of implicit information is the

x86 virtual memory architecture. A virtual address is translated to a physical address

using page directories and page tables stored in memory. The system configuration

register CR3 holds the physical address of the active address space’s page directory.

Additionally, the most recently used page-directory and page table entries are stored

in the translation lookaside buffers (TLB). Figure 2.17 shows how x86 virtual address

translation occurs. The page directory address from the page directory base register,

CR3, is used to locate the page directory. The most significant 10 bits of the linear

address are used to index the page directory and locate a pointer to the appropriate

page table. Linear address bits 21 through 12 are used to index the page table for the

page table entry, which when combined with the 12 least significant bits of the linear

address index the physical page.

CR3 is a privileged register and will cause an exit to the VMM if written to. Ant-

farm takes advantage of this to track processes in the guest virtual machine [Jon07]. It

defines a unique address space identifier (ASID) that corresponds to a unique process.

When a new page directory physical address is written to CR3 it is recorded in the

32

Figure 2.17: x86 Virtual Address Translation [Cor08a]

ASID registry as that process’ ASID. Antfarm needs to observe three process-related

events; process creation, context switch, and process exit.

• Process Creation and Context Switch

When the VMM detects that CR3 has been written to, the value is compared to

those in the ASID registry. If the value is not present, then a new address space

has been created and the ASID is added to the ASID registry. If it is already

present, then a context switch has occurred and the new ASID is active.

• Process Exit

In order to isolate the different address spaces, the operating system must ensure

that page directories and page tables are not reused without first being cleared of

their values. Clearing of non-privileged page table entries is done on process exit

by Windows and Linux. Tracking when the number of non-privileged page table

entries reaches zero gives the VMM the first indication that a process has exited.

Additionally, the TLB must be purged when an address space is deallocated.

In the x86 architecture, this happens automatically when the value in CR3 is

changed. Therefore, the VMM can infer that a process with the outgoing ASID

has exited when there are zero non-privileged page table entries and the value

in CR3 is changed [Jon07].

33

Jones uses Antfarm to implement the cross-view validation hidden process de-

tector, Lycosid [Jon07]. The VMM-based detector uses Antfarm to obtain a trusted

view of the system processes. Next, an untrusted view is obtained via a network

connection to the VM and a user-level utility such as ps for Linux or tasklist.exe

for Windows. These two different views are linked together by matching CPU time

of each process. Finally, statistical techniques are used to increase the accuracy of

detection in the face of interference and synchronization. Lycosid is vulnerable to

desynchronization attacks, but this can be overcome by ensuring that any user-land

process monitor was using the same view as Lycosid [Jon07].

2.7 Summary

This chapter presents fundamental concepts related to virtualization, host-based

intrusion detection, and operating systems and recent research in those areas. First,

virtualization methods are presented. Next, important Windows operating system

data structures are explored in detail. Then, malware is defined and discussed. Later,

principles of host-based intrusion detection are detailed. Finally, virtual machine

introspection is explained.

34

III. Methodology

This chapter discusses the methodology used to measure the performance of the op-

erating system and rootkit detection functions applied to Windows virtual machines.

Section 3.1 defines the problem. Section 3.2 introduces the research goals. Section 3.3

presents the research approach. Section 3.4 discusses the experimental design for op-

erating system detection and SSDT location and hook detection.

3.1 Problem Definition

The development of virtualization technology has provided a new method for

isolated OS monitoring. Security monitoring can be performed from the VMM or a

trusted VM using virtual machine introspection. Hardware virtualization extensions

isolate the security monitor from the guest OS being monitored. However, the se-

mantic gap must be bridged to accomplish this monitoring. Livewire, VMWatcher,

Lares, and Antfarm utilize virtual machine introspection to monitor guest operat-

ing systems [GR03,JWX07,PCSL08,JADAD08]. Systems using explicit information

(Livewire, VMWatcher, and Lares) require precompiled OS information for the guest

operating system. Moreover, implicit information is limited and has only been used by

Antfarm to monitor processes running in a guest OS. This research attempts to find

a middle ground between explicit and implicit information introspection. Guest OS

information is automatically obtained from guest memory or trusted sources and used

in conjunction with the XenAccess library to monitor the guest’s SSDT for hooks.

3.2 Goals

The methodology defined in this chapter is used to enable detection of SSDT

hooks in a Windows guest domain from Xen’s domain 0. Each of the goals defined

below provide the means to carry out this detection:

• Detect the Guest Operating System

• Identify Version-Specific Offsets

35

• Locate OS Data Structures to Be Monitored

It is hypothesized that the Windows operating system version can be detected

from domain 0 by examining the guest memory using forensic techniques. This version

information can be used to retrieve the required offset information. Additionally, it

is hypothesized that using techniques employed by malware writers [C0l], the system

service dispatch table can be located and monitored for hooks.

3.3 Approach

The hardware used for this research is a Dell D630 laptop with an Intel Core

2 Duo T7300 processor, two gigabytes of memory, and a 120 gigabyte hard drive.

The T7300 processor is Intel Virtualization Technology capable and enables the use

of hardware-assisted virtualization on the test platform.

The XenAccess library, version 0.4, is used to enable the virtual machine in-

trospection necessary to monitor the Windows guest operating systems. The library

provides the ability to view memory pages of one domain from another privileged

domain [PCL07,Pay07]. It gives a raw view of guest memory that is much like that

of a forensic memory dump. Therefore, many tools and techniques developed for

forensic analysis can be applied to dynamically monitor guest operating systems from

the management domain. This library is used because the availability of source code

enables modification to suit the needs of this research. Introspection is accomplished

by using a configuration file based on prior knowledge of the guest OS data struc-

tures. This research eliminates the need for a configuration file by using OS detection

results and information obtained from guest memory to configure the XenAccess li-

brary. Compatibility with XenAccess drives the choice of many other portions of the

testing environment and the core components are similar to [PCSL08]. The newest

version of Xen that works with XenAccess 0.4 and Windows hardware-assisted virtual

36

Table 3.1: XenAccess Required Data Structure Information

XenAccess name Windows Data Structure
win_tasks EPROCESS->ActiveProcessLinks

win_pdbase EPROCESS->Pcb->DirectoryTableBase

win_pid EPROCESS->UniqueProcessId

win_peb EPROCESS->Peb

win_iba EPROCESS->Peb->ImageBaseAddress

win_ph EPROCESS->Peb->ProcessHeap

machines is Xen version 3.1.4.1 Additionally, Fedora 8 is used for the Xen domain 0,

as it is the newest version of Fedora that runs as a Xen domain 0.

The Windows hardware-assisted virtual machines are created and configured as

described in the example provided with the Xen source code, xmexample.hvm. A ten-

gigabyte virtual disk is created for each guest domain, and the OS is installed from

base version CD media and upgraded to each service pack version. Each guest OS is

allotted 512 megabytes of memory and one virtual CPU. The setup and configuration

of the test environment is described in detail in Appendix C.

3.4 Experimental Design

3.4.1 Operating System Detection. In order to realize the goal of version-

independent, automatic Windows guest OS introspection, it is necessary to imple-

ment an OS detection function as part of this research. XenAccess requires knowl-

edge of the location of several operating system data structures in order to be fully

functional. For example, until the version-specific EPROCESS->ActiveProcessLinks,

EPROCESS->Pcb->DirectoryTableBase, and EPROCESS->UniqueProcessId offsets are

known, only the kernel memory can be mapped to dom0. Table 3.1 shows the data

structures required by XenAccess for Windows guest domains. These offsets can

change for different versions of Windows as well as with Windows service pack up-

dates or hotfixes. This is the impetus for detecting the version of Windows that

is running in a guest domain. The offset information for each version of Windows

1XenAccess 0.5, released on January 5, 2009 claims support for Xen 3.3.0

37

can be obtained by looking at the EPROCESS structure in the Windows kernel de-

bugger (windbg) using the dt -v -b _EPROCESS command. Appendix B shows the

output of the dt command for Windows XP Service Pack 2 with the pertinent en-

tries in boldface type2. In addition to offsets, XenAccess requires a file containing

the kernel exports for the particular version of windows. This file can be obtained by

using the the dumpbin.exe utility provided with Microsoft Visual Studio by executing

dumpbin.exe /exports ntoskrnl.exe. Alternatively, dumpbin.exe comes with the

free MASM32 development environment. XenAccess requires the export information to

be contained in a text file pointed to by the configuration file. XenAccess uses this file

to lookup symbols from disk whenever the windows_symbol_to_address() function

is called.

Determining the OS version begins with a list of known base addresses where the

Windows kernel is loaded into memory. Like the offsets described above, this address

can change between major versions of Windows as well as service packs and hotfixes.

This information is also obtained from the kernel debugger. The technique used for OS

detection is based on a Perl script used to analyze memory dumps by Harlan Carvey

called kern.pl [Car07] [Car06]. It was chosen because export symbol information

contained in the kernel executable can be obtained with minimal effort after the

OS detection is complete. This completely automates the XenAccess configuration

process by using the exports retrieved from memory and the known offsets for the

detected version. For an added measure of security, the exports obtained from memory

can be compared to a known set of export symbols obtained from an untainted kernel

executable.

The OS detection algorithm works by starting at a known kernel base address

and stepping through memory guided by the PECOFF and VS VERSION INFO

formats as shown in Figure 3.1 [Cor08d] [Cor08e]. Arrows from one box to another

indicate following a pointer, while the lines terminated by a dot indicate an offset into

2Output of the dt command for all OS versions used in this research are included in electronic
form with the source code.

38

Figure 3.1: OS Detection Process

the same region of memory. If the 0xfeef04bd signature in the VS VERSION INFO

structure is found, a successful detection is reported, the kernel base address is set,

and the version information strings are saved. If any signatures are not found or an

attempt to map a specific memory page results in a null pointer, testing moves to the

next base address.

After OS detection is finished, many pointers to the kernel executable still exist.

This feature allows for the retrieval of the addresses of functions exported by the

kernel. The kernel’s optional header, where the address to the resource table is found,

also contains the address of the kernel’s export table. The kernel export area contains

three parallel tables with the export names, addresses, and ordinals. In order to

39

put them in the name and address pair format desired by XenAccess, they must be

reindexed using the pseudocode shown in Listing III.1.

Listing III.1:

i = Search_ExportNamePointerTable (ExportName);

ordinal = ExportOrdinalTable [i];

SymbolRVA = ExportAddressTable [ordinal - OrdinalBase];

With this step complete, the exports obtained from the kernel image in memory are

stored in the XenAccess instance structure for later retrieval using

windows_symbol_to_address_from_mem(), which replaces the standard library func-

tion, windows_symbol_to_address().

3.4.1.1 Performance Tests. The operating system detection algorithm

is evaluated using three experiments scripted from the Xen domain 0. First, the

accuracy of the operating system function is tested. Next, the initialization time is

compared to the standard library. Last, the performance of the new symbol lookup

function is compared to the standard library function.

Operating System Detection Performance. The experiment con-

sists of thirty trials for each of nine Windows versions and Ubuntu 8.10. Table 3.2

lists the OS versions tested and the kernel base address associated with that version.

For the purposes of the XenAccess library, Windows versions with the same base

address and data structure format can be processed identically. However, they can

be distinguished using the contents of the VS VERSION INFO structure if further

granularity is desired. OS detection is considered a success if the correct kernel base

address is returned. The script that tests each OS is shown in Listing III.2, with

<WindowsVersion> representing the names of the OSes in Table 3.2. The body of

the loop consists of starting the VM, sleeping for 60 seconds while it boots3, running

the os-detect program with output directed to a file, and destroying the VM. This

process is repeated 30 times.

360 seconds was chosen to accommodate the OS with the longest boot time, Windows Vista.

40

Table 3.2: Operating System Base Addresses

Version Base Address

Windows 2000 Professional SP4 0x80400000

Windows XP Professional 0x804d0000

Windows XP Professional SP1 0x804d4000

Windows XP Professional SP1a 0x804d4000

Windows XP Professional SP2 0x804d7000

Windows XP Professional SP3 0x804d7000

Windows 2003 Server 0x804de000

Windows 2003 Server SP1 0x80800000

Windows Vista Business 0x81800000

Ubuntu Intrepid Ibex 8.10 0xc0000000

Listing III.2:

for ((i = 1; i <= 30; i++))

do

xm create /etc/xen/<WindowsVersion >.hvm

sleep 60

./os -detect <WindowsVersion >HVM > results/OSdetect/<WindowsVersion >-\$i

xm destroy <WindowsVersion >HVM

done

XenAccess Initialization Time Performance. During initializa-

tion, the standard XenAccess library must read in the operating system information

from the configuration file and scan for the kernel image in memory. In contrast, the

modified version used for this research scans known kernel base addresses and then

sets configuration information based on the OS detected. The initialization process

used in this research eliminates any disk accesses and blind memory scanning and

therefore is more efficient. For the modified library, initialization time also includes

the time to process the kernel exports because they are read during initialization.

In order to test the performance of the standard XenAccess library initialization

versus the modified version, the test program is instrumented to read the processor’s

time stamp counter before the library initialization function is called and immediately

after. This is done using the RDTSC instruction, which on the Intel Core 2 Duo proces-

41

sor, provides a monotonically increasing unique value, or tick, that is used to calculate

relative performance [Cor08b]. The code in Listing III.3 shows the time_hack() func-

tion that is used make call to RDTSC. The volatile keyword is used to ensure that the

code runs when specified and is not relocated by the compiler during its optimiza-

tions. The initialization performance test consists of 1,000 trials using each library

on each of the nine Windows versions in Table 3.2, for a total of 18,000 trials.

Listing III.3:

uint64_t time_hack ()

{

uint32_t lo , hi;

__asm__ __volatile__ ("rdtsc" : "=a" (lo), "=d" (hi));

return (uint64_t)hi << 32 | lo;

}

Symbol Lookup Performance. The time_hack() function is also

used to test the performance of the new windows_symbol_to_address_from_mem()

function versus the standard library function windows_symbol_to_address(). The

respective initialization procedures for the standard library and the modified library

are carried out before the first call to time_hack(). Since both libraries search the

symbols linearly and the number of symbols varies with different versions, the first,

middle, and last symbols were chosen as search queries. Each trial consisting of

the three separately measured lookups was performed 1,000 times for each library.

Therefore, a total of 6,000 lookups are performed for each of 9 operating system

versions for a total of 54,000 measured symbol lookups.

3.4.2 SSDT Location and Hook Detection. As defined by Hofmeyr et al.,

a host-based intrusion detection system must perform three functions: data collec-

tion, data classification, and data reporting [HFS98]. The system developed for this

research accomplishes data collection via the XenAccess library with modifications,

data classification by checking kernel memory boundaries, and data reporting by iden-

tifying hooks and removing them if desired.

42

3.4.2.1 Data Collection with XenAccess. The first step in enabling

XenAccess to perform data collection for the purposes of intrusion detection is to

detect the OS version that is running. Once this is accomplished, as discussed in

Section 3.4.1, the library is initialized and introspection is performed from the Xen

domain 0. This provides a raw view of memory, akin to a memory dump. The

locations of OS data structures need to be determined so that they can be monitored.

The SSDT is chosen for this experiment because approximately fifty percent of rootkits

in the wild use this technique [KS07,Rie06].

The address of the SSDT can be obtained using the kernel export,

KeServiceDescriptorTable as described in [DPB99]. However, as discussed in Sec-

tion 2.2.2, this does not contain information for services exported from Win32k.sys.

This research determines the location of the SSDT and shadow SSDT by using a

technique similar to C0ldcrow [C0l]. The information necessary to locate the SSDT

is contained as part of the ETHREAD structure of a Windows GDI process. Figure 3.2

illustrates the steps taken to find the SSDT using bold arrows. First, the kernel

export PsInitialSystemProcess is used to gain entry into the doubly linked Win-

dows process list. This provides a pointer to the System process, which is not a

Windows GDI process. In Windows GDI processes, the Win32Process field in the

EPROCESS structure will be non-null. Next, the list is traversed until the current

EPROCESS->Win32Process field is not null. To get to the ETHREAD structure the

pointer in the EPROCESS->Pcb->ThreadListHead field is followed to the ETHREAD

structure. Finally, the ETHREAD structure contains the DirectoryTable field which

points to the Shadow SSDT.

3.4.2.2 Data Classification. In order to classify a particular address

in the SSDT as safe or malicious, the location and size of the kernel and win32k.sys

in memory are needed. All addresses in the SSDT should point to an address in

the kernel’s memory space, and addresses in the shadow SSDT should point into the

memory space of Win32k.sys. This information can be obtained from the kernel

43

Figure 3.2: Shadow SSDT Location

module entry for each file in the Windows driver list as described by Hoglund [HB05].

This technique is adapted for use from outside the guest OS using XenAccess.

First a pointer to the module list must be obtained. The necessary kernel

variable, PsLoadedModuleList is not exported by the kernel. For Windows XP and

20034, it can be found in a structure pointed to by the KdVersionBlock field of

the processor control region structure, KPCR [Bar, Ion]. In kernel mode, the KPCR is

always located at 0xffdff000. At offset 0x34, the KdVersionBlock field points to the

DBGKD GET VERSION64 structure. This structure is used by the kernel debugger

and contains the kernel base address, the PsLoadedModuleList address, and a pointer

to the KDDEBUGGER DATA64 structure which contains many more unexported

kernel variables. The format of these structures is listed in Appendix B.

Using PsLoadedModuleList the module list is traversed enumerating each mod-

ule’s memory space using the base address and size found in the module structure.

If any address in the SSDT does not point to a location within the kernel’s memory

4For Windows 2000 and Windows Vista PsLoadedModuleList is hardcoded in the library

44

space, it is classified as a hook and the module list is checked to see if it points to

another module.

3.4.2.3 Data Reporting. The hook detector reports the system call

number of any hook and the module that it points to, if applicable. The hook could

point to a hidden module not in the module list or to a location that is not in any

module’s memory space. The system call number can be used to determine what

function is being hooked using a system call table [Pro09]. This gives an indication

about what the hook might be trying to achieve.

This research implements the SSDT monitor as a polling process from the Xen

domain 0. The polling frequency is as fast as the processor will allow, approximately

utilizing an entire core of the dual-core processor. For each iteration of the polling

loop, the SSDT is located and checked for hooks. Hooks are automatically replaced

with a known good value obtained before infection. The hooked system call number,

target address, and kernel module’s address space the target falls in are recorded in

the result file.

3.4.2.4 Hook Detection Performance. To test the ability of the hook

detector to locate hooks in the SSDT, two malware programs from the wild are used.

Both the Agony rootkit and ProAgent spy tool are known to install hooks into the

SSDT and they can be made to persist between restarts of the operating system.

The malware is installed on VMs for each of the nine Windows versions. Shown in

Listing III.4, the same script used to run the OS detection experiment is modified to

run the check-ssdt program 30 times for each version of Windows.

45

Table 3.3: Agony Rootkit Options and Hooked System Calls

Option System Call Hooked

-p <process name> NtQuerySystemInformation

-f <file/directory name> NtQueryDirectoryFile

-k <registry key> NtEnumerateKey

-v <registry value> NtEnumerateValueKey

-tcp <port> NtDeviceIoControlFile

-udp <port> NtDeviceIoControlFile

-space NtQueryDirectoryFile

<drive letter>:<space to hide> NtQueryVolumeInformationFile

Listing III.4:

for ((i = 1; i <= 30; i++))

do

xm create /etc/xen/<WindowsVersion >.hvm

sleep 60

./check -ssdt <WindowsVersion >HVM > results/<malware >/< WindowsVersion >-\$i

xm destroy <WindowsVersion >HVM

done

Agony Rootkit. Agony is an open source, kernel-mode rootkit

that hides processes, files, directories, registry keys and values, TCP and UDP ports,

Windows services, and falsifies disk space. It is obtained from [Int06] and compiled

from source using Dev-C++. Source code analysis reveals that Agony uses SSDT

hooks to accomplish all hiding functions except service hiding. Agony is a command

line tool with options allowing the user to specify what to hide. Table 3.3 lists the

hiding options with the appropriate system call that is hooked by that option. For

this experiment the following command line is used:

agony -r -p notepad.exe -f agony.c -k test -v test \

-tcp 135 -udp 135 -space c:10

This results in the hooking of all six system calls listed in Table 3.3 and persists upon

restart due to the -r option.

46

ProAgent. The ProAgent spy tool is a rootkit that collects pass-

word and user information on the infected system and emails it to the attacker. The

program installs a driver named JiurlPortHide.sys onto the system. This driver is

used to hide the port that the rootkit uses to send the collected information. Source

code for JiurlPortHide.sys obtained from [Jiu08], reveals that this driver hooks

the NtDeviceIoControlFile system call and persists through system restarts using

system registry entries.

3.5 Summary

This chapter explains the methodology used to evaluate the operating system

detection algorithm and SSDT hook detector implemented in this research. The

operating system detection algorithm is evaluated based on detection accuracy, ini-

tialization time, and kernel export symbol lookup time. The SSDT hook detector is

evaluated based on the ability to detect hooks placed in the SSDT by two rootkits.

47

IV. Results and Analysis

This chapter presents and analyzes the experimental results. Section 4.1.1 analyzes

the results of the operating system detection and symbol lookup experiments. Next,

Section 4.1.2 presents the results of the rootkit hook detection work. Finally, Sec-

tion 4.4 summarizes the overall results from this research.

4.1 Results and Analysis of Experiments

4.1.1 Operating System Detection Analysis. The operating system detection

experiment tests if the correct kernel base address is detected for each Windows

version. Table 4.1 shows the outcome of the 30 trials for each operating system. The

results show a positive detection for all versions of Windows.

Since no Linux OS detection is implemented, the Ubuntu Linux VM resulted in

zero detections, as expected.

The Ubuntu Linux VM resulted in zero detections, as expected. False positive

and false negative errors can be caused by malicious alteration of kernel memory.

False negatives are easier to cause because only one piece of data along the detection

algorithm’s path in Figure 3.1 on page 39 needs to be changed to cause a negative

result. Creating a false positive would require detailed knowledge of the detection

algorithm and precisely crafted changes in kernel memory. Additionally, these changes

may result in an unstable kernel.

4.1.1.1 Initialization Time. The standard XenAccess library must

access the disk to read in the configuration file and scan memory to find the base of

the kernel image. This results in a longer initialization time and additional effort to

manually build a configuration file and kernel export file. A 1-sample t-test with a 95

percent confidence interval is applied to data obtained from the time_hack() function

in the detection algorithm. The results of the t-tests for each Windows version are

contained in Table 4.2. The table contains a row entry for the standard and modified

libraries with each Windows version. The two entries for each Windows version, for the

48

Table 4.1: Operating System Detection Results

Version Base Address Successful Detections

Windows 2000 Professional SP4 0x80400000 30/30
Windows XP Professional 0x804d0000 30/30
Windows XP Professional SP1 0x804d4000 30/30
Windows XP Professional SP1a 0x804d4000 30/30
Windows XP Professional SP2 0x804d7000 30/30
Windows XP Professional SP3 0x804d7000 30/30
Windows 2003 Server 0x804de000 30/30
Windows 2003 Server SP1 0x80800000 30/30
Windows Vista Business 0x81800000 30/30
Ubuntu Intrepid Ibex 8.10 0xc0000000 0/30

modified library and standard library, are grouped using double lines for comparison.

Each entry in the table shows the mean, standard deviation, standard error, and a

95% confidence interval for that Windows version. Figure 4.1 uses data from the

t-test to compare the mean initialization time of the standard XenAccess library

versus the modified version of the library for each operating system investigated. The

confidence intervals for many of the versions are too small to be seen and show up

as a dash. The columns greater than 109 CPU ticks represent versions of Windows

for which the standard XenAccess library’s initial scanning method fails to find the

kernel base address. At this failure point, execution time is already approximately

100 times greater than the modified library, so the trial is terminated. Therefore,

actual initialization times are on the order of 4 ∗ 1012 ticks, or about 40 minutes.

The failure of the initial scanning method may be a bug in XenAccess, in which

case it is expected that the standard library initialization times would be similar

for all Windows versions. Including the trials that are terminated early, the overall

mean speedup is approximately 105. Including only those operating systems for which

the standard XenAccess library’s initial scanning method succeeds, the overall mean

speedup is 1.9.

49

Figure 4.1: Mean Initialization Times - 95% Confidence Interval

50

Table 4.2: 1-sample t-Test for Initialization Time Comparison

Version N Mean StDev SE Mean 95% CI

Windows 2000 SP4 Mod 1000 18803414 2262363 71542 (18663024, 18943805)
Windows 2000 SP4 Std 1000 22517533 4517216 142847 (22237219, 22797847)

Windows XP Mod 1000 21996755 6042263 191073 (21621804, 22371706)
Windows XP Std 1000 4145416238 350270867 11076537 (4123680290, 4167152187)

Windows XP SP1 Mod 1000 22083674 5108116 161533 (21766691, 22400656)
Windows XP SP1 Std 1000 4504633660 251540793 7954418 (4489024375, 4520242945)

Windows XP SP1a Mod 1000 21775002 3572091 112959 (21553337, 21996667)
Windows XP SP1a Std 1000 4290522026 249610260 7893369 (4275032540, 4306011512)

Windows XP SP2 Mod 1000 21933356 2883767 91193 (21754404, 22112307)
Windows XP SP2 Std 1000 27226046 5697695 180177 (26872478, 27579615)

Windows XP SP3 Mod 1000 22152455 2954825 93440 (21969094, 22335815)
Windows XP SP3 Std 1000 27111457 5686774 179832 (26758566, 27464348)

Windows 2003 Mod 1000 23005312 5609042 177373 (22657245, 23353379)
Windows 2003 Std 1000 4143102517 271308223 8579519 (4126266570, 4159938463)

Windows 2003 SP1 Mod 1000 24293921 10416096 329386 (23647553, 24940288)
Windows 2003 SP1 Std 1000 4057345810 139567138 4413500 (4048685016, 4066006605)

Windows Vista Mod 1000 32786362 17041459 538898 (31728859, 33843864)
Windows Vista Std 1000 128445627 20999008 664047 (127142540, 129748714)

51

4.1.1.2 Symbol Lookup Time. The symbol lookup time is compared

based on calls to the windows_symbol_to_address() function for the standard

XenAccess library and calls to windows_symbol_to_address_from_mem() for the

modified version. A 1-sample t-test with a 95 percent confidence interval is con-

ducted for the data obtained from the symbol lookup time trials. The tabular data is

contained in Appendix A. The means and confidence intervals are used to construct

Figure 4.2 which shows the average number of CPU ticks taken to look up a symbol

on each operating system with the standard and modified XenAccess libraries. In-

dividual plots for each operating system and symbol lookup that include confidence

intervals are found in Appendix A. On average, the library modified for this research

is one order of magnitude faster than the standard library for all operating systems

tested.

XenAccess maintains a 25-entry least recently used (LRU) cache for symbols.

This means that after the initial lookup, subsequent lookups of the same symbol will

not need to access the disk as long as it has not been evicted. Without a representative

workload, it is difficult to calculate the miss rate of this cache. Because both versions

of XenAccess benefit from this cache, the difference in lookup speed shown above is

only valid for initial lookups.

In addition to an improvement in performance and eliminating the need for a

file containing kernel exports, parsing the kernel exports from guest memory offers

another avenue for intrusion detection. Crossview verification can be implemented

by comparing the symbols from guest memory with symbols from a trusted source,

such as an isolated Windows installation from trusted media or the Microsoft symbol

server. The Microsoft symbol server provides debugging information for Windows

operating system files. Any differences in the symbol information obtained from the

untrusted and trusted sources indicate that the kernel has been tampered with.

52

Figure 4.2: Average CPU Ticks for Kernel Symbol Lookup

4.1.2 SSDT Location and Hook Detection Analysis. Tables 4.3 and 4.4

show the results of the SSDT hook detection experiments. Each of the 30 trials

produce identical results. The SSDT entry number reported by the detector is cross-

referenced using the Metasploit Project system call table [Pro09] to obtain the name

of the hooked system call. Note that the system call numbers only change with major

versions of Windows so they are grouped together. The owning kernel module where

the hook points to is reported by the detector and also listed in the tables.

The detector correctly reports the hooks installed by both rootkits. For Agony,

the same six system calls are hooked in each version of Windows. This is the reason

that only the system call numbers change in Table 4.3. ProAgent demonstrates the

same behavior with all versions hooking NtDeviceIoControlFile.

53

Table 4.3: Hooks Detected for Agony Rootkit

Version Entry # System Call Name Owning Module

Windows 2000 SP4 0x38 NtDeviceIoControlFile agony.sys

0x3c NtEnumerateKey agony.sys

0x3d NtEnumerateValueKey agony.sys

0x7d NtQueryDirectoryFile agony.sys

0x97 NtQuerySystemInformation agony.sys

0x9d NtQueryVolumeInformationFile agony.sys

Windows XP, 0x42 NtDeviceIoControlFile agony.sys

Windows XP SP1, 0x47 NtEnumerateKey agony.sys

Windows XP SP1a, 0x49 NtEnumerateValueKey agony.sys

Windows XP SP2, 0x91 NtQueryDirectoryFile agony.sys

Windows XP SP3 0xad NtQuerySystemInformation agony.sys

0xb3 NtQueryVolumeInformationFile agony.sys

Windows 2003, 0x45 NtDeviceIoControlFile agony.sys

Windows 2003 SP1 0x4b NtEnumerateKey agony.sys

0x4d NtEnumerateValueKey agony.sys

0x97 NtQueryDirectoryFile agony.sys

0xb5 NtQuerySystemInformation agony.sys

0xbb NtQueryVolumeInformationFile agony.sys

Windows Vista Business 0x7f NtDeviceIoControlFile agony.sys

0x85 NtEnumerateKey agony.sys

0x88 NtEnumerateValueKey agony.sys

0xda NtQueryDirectoryFile agony.sys

0xf8 NtQuerySystemInformation agony.sys

0xfe NtQueryVolumeInformationFile agony.sys

54

Table 4.4: Hooks Detected for ProAgent Rootkit

Version Entry # System Call Name Owning Module

Windows 2000 SP4 0x38 NtDeviceIoControlFile JiurlPortHide.sys

Windows XP 0x42 NtDeviceIoControlFile JiurlPortHide.sys

Windows XP SP1 0x42 NtDeviceIoControlFile JiurlPortHide.sys

Windows XP SP1a 0x42 NtDeviceIoControlFile JiurlPortHide.sys

Windows XP SP2 0x42 NtDeviceIoControlFile JiurlPortHide.sys

Windows XP SP3 0x42 NtDeviceIoControlFile JiurlPortHide.sys

Windows 2003 0x45 NtDeviceIoControlFile JiurlPortHide.sys

Windows 2003 SP1 0x45 NtDeviceIoControlFile JiurlPortHide.sys

Windows Vista Business 0x7f NtDeviceIoControlFile JiurlPortHide.sys

4.2 Overall Analysis

This research successfully implements an operating system detection function

to initialize the XenAccess library with appropriate configuration information. Addi-

tionally, export symbol information is obtained from memory eliminating the need for

a symbol file and increasing initial symbol lookup speed by approximately 10 times.

Moreover, initialization with the modified library achieves a speedup of 1.9 over the

standard library.

The hook detection software successfully retrieves the location of SSDT from

guest memory and uses it to monitor for hooks. The hook detector removes hooks

placed in the SSDT automatically and replaces them with values obtained before

hooking. The Agony and ProAgent rootkits are used to install hooks in the SSDT

and are successfully detected by the monitor.

4.3 Limitations

The hook detector implemented in this research is a proof of concept for auto-

mated location of the SSDT from the Xen management domain. Many other OS data

structures can be targeted by malware. Additionally, the SSDT is hooked by many

personal security products. These hooks will be reported just as with the rootkit

hooks creating false positives. One solution to this problem is to create a whitelist of

kernel modules that are allowed to install hooks.

55

4.4 Summary

This chapter analyzes the experimental results obtained from the operating

system detection and hook detection experiments. The initialization time and symbol

look time are compared for the standard and modified XenAccess library. Next,

the ability of the hook detector to detect hooks placed in the SSDT by malware is

evaluated. Finally, an overall analysis of the results is presented.

56

V. Conclusions

This chapter provides a summary of key findings of this research. Section 5.1 draws

conclusions based on experimental results. Section 5.2 discusses the impact of this

research. Section 5.3 gives recommendations for future research in this area.

5.1 Research Conclusions

The XenAccess library can be automatically configured and used to monitor the

system service dispatch table of a Windows VM from the Xen management domain.

Obstacles caused by the semantic gap are overcome by investigating guest OS kernel

memory using XenAccess and applying forensic memory processing techniques as

listed below.

• Detecting the Guest Operating System

A Windows operating system version detection algorithm used for analysis of

memory dumps [Car06] is adapted for use with XenAccess and successfully

detects nine recent versions of Windows from the Xen management domain.

A speedup of 1.9, on average, is observed for XenAccess initialization and an

initialization file is not required.

• Identifying Version-Specific Offsets

The Windows kernel exports are obtained during initialization of the modified

library. This eliminates the need for a system map file. Version-specific offsets

in the EPROCESS structure must still be obtained using the kernel debugger.

However, they are integrated into the library code and automatically set for the

appropriate version as part of the operating system detection function.

• Locating OS Data Structures to Be Monitored

The system service dispatch table is located by adapting a technique used by

malware [C0l], to parse it from the guest OS memory. Hooks are detected using

the kernel memory space as a boundary and the kernel module list to discover

57

where they point. Hooks implanted in the SSDT by the Agony and ProAgent

rootkits are detected on all nine Windows versions tested.

5.2 Research Impact

This research demonstrates the value of using forensic techniques with virtual

machine introspection to conduct host-based intrusion detection. Moreover, it is the

first to integrate operating system detection as a means to automate introspection

library configuration and is a step toward OS independent virtual machine introspec-

tion. This technique combined with hardware-assisted virtualization is a step forward

from current ring 0 intrusion detection software.

The XenAccess library provides a promising open-source virtual machine intro-

spection platform. The OS detection and data structure monitoring implemented in

this thesis extend the capabilities of XenAccess. Additionally, the library initialization

is 1.9 times faster and initial symbol lookups are an order of magnitude faster. More-

over, XenAccess 0.5 includes the scanning of known operating system base addresses

during initialization to speed the process [Pag08]. Ideas presented as future work will

also enhance the XenAccess library and increase security for virtual machines running

in Xen.

5.3 Recommendations for Future Work

5.3.1 Version Specific Operating System Offsets. Modifications made to the

XenAccess library for operating system detection used in this research still require

prior knowledge of OS data structures. It may be possible for future research to

eliminate this need for prior knowledge by obtaining kernel data structure informa-

tion directly from the Microsoft symbol server when needed. Signature information

needed to retrieve kernel symbol information is contained within the kernel memory.

Additionally, the KDDEBUGGER DATA64 structure defined in Appendix B con-

tains the EPROCESS->Peb and EPROCESS->Pcb->DirectoryTableBase offsets needed

by XenAccess.

58

5.3.2 OS Data Structure Monitoring. This research implements a monitor

for the SSDT. This functionality can be extended to other important operating system

data structures. The shadow SSDT can be monitored for Windows GDI function

hooks. Monitors for the interrupt descriptor table and driver IRP tables can also be

implemented. Extending this research to detect in-line system call function hooks

only requires checking the first 5 bytes of the function at every address in the SSDT

for jump instruction opcodes. A similar approach can be used for in-line function

hook elsewhere.

5.3.3 System Call Interposition. The Lares architecture, discussed in Sec-

tion 2.6.1.3 could be used as a data collection mechanism for system call traces.

Software host-based intrusion detection systems principles like those discussed in Sec-

tion 2.4 could then be applied for intrusion detection with these traces.

5.3.4 Linux OS Detection. The OS detection algorithm used in this research

is Windows specific. However, a Linux OS detection function would also ease the

burden of library configuration. Implementing a reliable Linux OS detector may not

be feasible due to the large number of different versions and the ability to create

custom kernels.

5.4 Summary

This chapter presents the research conclusions. Research impact is discussed,

and recommendations for future work are given.

59

Appendix A. Symbol Lookup Data

This Page Intentionally Left Blank

60

Table A.1: 1-Sample t-Test of Symbol Lookup Times - Standard Library

Variable N Mean StDev SE Mean 95% CI

Windows 2000 SP4 First Symbol 1000 102883 9471 300 (102295, 103471)

Windows 2000 SP4 Middle Symbol 1000 786362 1943459 61458 (665761, 906962)

Windows 2000 SP4 Last Symbol 1000 1350774 575127 18187 (1315085, 1386463)

Windows XP First Symbol 1000 105914 16877 534 (104867, 106962)

Windows XP Middle Symbol 1000 929719 2744273 86782 (759424, 1100014)

Windows XP Last Symbol 1000 1516830 655517 20729 (1476152, 1557508)

Windows XP SP1 First Symbol 1000 106086 20574 651 (104810, 107363)

Windows XP SP1 Middle Symbol 1000 774600 345322 10920 (753171, 796029)

Windows XP SP1 Last Symbol 1000 1577734 846350 26764 (1525214, 1630254)

Windows XP SP1a First Symbol 1000 125571 339413 10733 (104508, 146633)

Windows XP SP1a Middle Symbol 1000 781595 432523 13678 (754754, 808435)

Windows XP SP1a Last Symbol 1000 1525383 667492 21108 (1483962, 1566804)

Windows XP SP2 First Symbol 1000 119357 278664 8812 (102064, 136649)

Windows XP SP2 Middle Symbol 1000 806261 487225 15407 (776026, 836496)

Windows XP SP2 Last Symbol 1000 1571303 765028 24192 (1523829, 1618776)

Windows XP SP3 First Symbol 1000 106128 10943 346 (105449, 106807)

Windows XP SP3 Middle Symbol 1000 780530 282694 8940 (762987, 798072)

Windows XP SP3 Last Symbol 1000 1532426 618272 19551 (1494060, 1570793)

Windows 2003 First Symbol 1000 133269 405252 12815 (108121, 158416)

Windows 2003 Middle Symbol 1000 817704 439093 13885 (790456, 844952)

Windows 2003 Last Symbol 1000 1546842 490806 15521 (1516385, 1577299)

Windows 2003 SP1 First Symbol 1000 106804 15441 488 (105846, 107762)

Windows 2003 SP1 Middle Symbol 1000 831238 338085 10691 (810258, 852217)

Windows 2003 SP1 Last Symbol 1000 1639586 615861 19475 (1601369, 1677803)

Windows Vista First Symbol 1000 112401 178000 5629 (101355, 123447)

Windows Vista Middle Symbol 1000 1114950 533549 16872 (1081841, 1148060)

Windows Vista Last Symbol 1000 2115550 627884 19855 (2076587, 2154514)

61

Table A.2: 1-Sample t-Test of Symbol Lookup Times - Modified Library

Variable N Mean StDev SE Mean 95% CI

Windows 2000 SP4 First Symbol 1000 61734 8088 256 (61232, 62236)

Windows 2000 SP4 Middle Symbol 1000 75085 198847 6288 (62746, 87425)

Windows 2000 SP4 Last Symbol 1000 85485 12416 393 (84715, 86256)

Windows XP First Symbol 1000 54777 5986 189 (54406, 55149)

Windows XP Middle Symbol 1000 73366 17210 544 (72298, 74434)

Windows XP Last Symbol 1000 95312 44161 1397 (92571, 98052)

Windows XP SP1 First Symbol 1000 54226 12423 393 (53455, 54997)

Windows XP SP1 Middle Symbol 1000 78425 190746 6032 (66589, 90262)

Windows XP SP1 Last Symbol 1000 91308 4687 148 (91018, 91599)

Windows XP SP1a First Symbol 1000 53801 7905 250 (53310, 54291)

Windows XP SP1a Middle Symbol 1000 72410 3947 125 (72165, 72655)

Windows XP SP1a Last Symbol 1000 94274 65038 2057 (90238, 98310)

Windows XP SP2 First Symbol 1000 62021 199532 6310 (49639, 74403)

Windows XP SP2 Middle Symbol 1000 72840 4064 129 (72588, 73092)

Windows XP SP2 Last Symbol 1000 92291 8977 284 (91733, 92848)

Windows XP SP3 First Symbol 1000 54212 8854 280 (53663, 54762)

Windows XP SP3 Middle Symbol 1000 72616 4995 158 (72306, 72926)

Windows XP SP3 Last Symbol 1000 97976 196954 6228 (85754, 110198)

Windows 2003 First Symbol 1000 60731 199680 6314 (48340, 73123)

Windows 2003 Middle Symbol 1000 86005 273248 8641 (69049, 102961)

Windows 2003 Last Symbol 1000 106328 275337 8707 (89242, 123414)

Windows 2003 SP1 First Symbol 1000 63349 280264 8863 (45957, 80740)

Windows 2003 SP1 Middle Symbol 1000 83159 216395 6843 (69730, 96587)

Windows 2003 SP1 Last Symbol 1000 104531 202544 6405 (91963, 117100)

Windows Vista First Symbol 1000 56257 38061 1204 (53895, 58618)

Windows Vista Middle Symbol 1000 89037 224591 7102 (75100, 102974)

Windows Vista Last Symbol 1000 120575 307522 9725 (101492, 139658)

62

Figure A.1: Symbol Lookup Comparison for Windows 2000 SP4

63

Figure A.2: Symbol Lookup Comparison for Windows XP

64

Figure A.3: Symbol Lookup Comparison for Windows XP SP1

65

Figure A.4: Symbol Lookup Comparison for Windows XP SP1a

66

Figure A.5: Symbol Lookup Comparison for Windows XP SP2

67

Figure A.6: Symbol Lookup Comparison for Windows XP SP3

68

Figure A.7: Symbol Lookup Comparison for Windows 2003

69

Figure A.8: Symbol Lookup Comparison for Windows 2003 SP1

70

Figure A.9: Symbol Lookup Comparison for Windows Vista Business

71

Appendix B. Windows Operating System Data Structures

B.1 EPROCESS Structure for Windows XP SP2

Listing B.1: Appendix2/xpsp2.txt

kd > dt -v -b _EPROCESS

ntdll!_EPROCESS

3 struct _EPROCESS , 107 elements , 0x260 bytes

+0x000 Pcb : struct _KPROCESS , 29 elements , 0x6c bytes

+0x000 Header : struct _DISPATCHER_HEADER , 6 elements , 0x10 bytes

+0x000 Type : UChar

+0x001 Absolute : UChar

8 +0x002 Size : UChar

+0x003 Inserted : UChar

+0x004 SignalState : Int4B

+0x008 WaitListHead : struct _LIST_ENTRY , 2 elements , 0x8 bytes

+0x000 Flink : Ptr32 to

13 +0x004 Blink : Ptr32 to

+0x010 ProfileListHead : struct _LIST_ENTRY , 2 elements , 0x8 bytes

+0x000 Flink : Ptr32 to

+0x004 Blink : Ptr32 to

+0x018 DirectoryTableBase : (2 elements) Uint4B

18 +0x020 LdtDescriptor : struct _KGDTENTRY , 3 elements , 0x8 bytes

+0x000 LimitLow : Uint2B

+0x002 BaseLow : Uint2B

+0x004 HighWord : union __unnamed , 2 elements , 0x4 bytes

+0x000 Bytes : struct __unnamed , 4 elements , 0x4 bytes

23 +0x000 BaseMid : UChar

+0x001 Flags1 : UChar

+0x002 Flags2 : UChar

+0x003 BaseHi : UChar

+0x000 Bits : struct __unnamed , 10 elements , 0x4 bytes

28 +0x000 BaseMid : Bitfield Pos 0, 8 Bits

+0x000 Type : Bitfield Pos 8, 5 Bits

+0x000 Dpl : Bitfield Pos 13, 2 Bits

+0x000 Pres : Bitfield Pos 15, 1 Bit

+0x000 LimitHi : Bitfield Pos 16, 4 Bits

33 +0x000 Sys : Bitfield Pos 20, 1 Bit

+0x000 Reserved_0 : Bitfield Pos 21, 1 Bit

+0x000 Default_Big : Bitfield Pos 22, 1 Bit

+0x000 Granularity : Bitfield Pos 23, 1 Bit

+0x000 BaseHi : Bitfield Pos 24, 8 Bits

38 +0x028 Int21Descriptor : struct _KIDTENTRY , 4 elements , 0x8 bytes

+0x000 Offset : Uint2B

+0x002 Selector : Uint2B

+0x004 Access : Uint2B

+0x006 ExtendedOffset : Uint2B

43 +0x030 IopmOffset : Uint2B

+0x032 Iopl : UChar

+0x033 Unused : UChar

+0x034 ActiveProcessors : Uint4B

+0x038 KernelTime : Uint4B

48 +0x03c UserTime : Uint4B

+0x040 ReadyListHead : struct _LIST_ENTRY , 2 elements , 0x8 bytes

+0x000 Flink : Ptr32 to

+0x004 Blink : Ptr32 to

+0x048 SwapListEntry : struct _SINGLE_LIST_ENTRY , 1 elements , 0x4 bytes

53 +0x000 Next : Ptr32 to

+0x04c VdmTrapcHandler : Ptr32 to

72

+0x050 ThreadListHead : struct _LIST_ENTRY , 2 elements , 0x8 bytes

+0x000 Flink : Ptr32 to

+0x004 Blink : Ptr32 to

58 +0x058 ProcessLock : Uint4B

+0x05c Affinity : Uint4B

+0x060 StackCount : Uint2B

+0x062 BasePriority : Char

+0x063 ThreadQuantum : Char

63 +0x064 AutoAlignment : UChar

+0x065 State : UChar

+0x066 ThreadSeed : UChar

+0x067 DisableBoost : UChar

+0x068 PowerState : UChar

68 +0x069 DisableQuantum : UChar

+0x06a IdealNode : UChar

+0x06b Flags : struct _KEXECUTE_OPTIONS , 7 elements , 0x1 bytes

+0x000 ExecuteDisable : Bitfield Pos 0, 1 Bit

+0x000 ExecuteEnable : Bitfield Pos 1, 1 Bit

73 +0x000 DisableThunkEmulation : Bitfield Pos 2, 1 Bit

+0x000 Permanent : Bitfield Pos 3, 1 Bit

+0x000 ExecuteDispatchEnable : Bitfield Pos 4, 1 Bit

+0x000 ImageDispatchEnable : Bitfield Pos 5, 1 Bit

+0x000 Spare : Bitfield Pos 6, 2 Bits

78 +0x06b ExecuteOptions : UChar

+0x06c ProcessLock : struct _EX_PUSH_LOCK , 5 elements , 0x4 bytes

+0x000 Waiting : Bitfield Pos 0, 1 Bit

+0x000 Exclusive : Bitfield Pos 1, 1 Bit

+0x000 Shared : Bitfield Pos 2, 30 Bits

83 +0x000 Value : Uint4B

+0x000 Ptr : Ptr32 to

+0x070 CreateTime : union _LARGE_INTEGER , 4 elements , 0x8 bytes

+0x000 LowPart : Uint4B

+0x004 HighPart : Int4B

88 +0x000 u : struct __unnamed , 2 elements , 0x8 bytes

+0x000 LowPart : Uint4B

+0x004 HighPart : Int4B

+0x000 QuadPart : Int8B

+0x078 ExitTime : union _LARGE_INTEGER , 4 elements , 0x8 bytes

93 +0x000 LowPart : Uint4B

+0x004 HighPart : Int4B

+0x000 u : struct __unnamed , 2 elements , 0x8 bytes

+0x000 LowPart : Uint4B

+0x004 HighPart : Int4B

98 +0x000 QuadPart : Int8B

+0x080 RundownProtect : struct _EX_RUNDOWN_REF , 2 elements , 0x4 bytes

+0x000 Count : Uint4B

+0x000 Ptr : Ptr32 to

+0x084 UniqueProcessId : Ptr32 to

103 +0x088 ActiveProcessLinks : struct _LIST_ENTRY , 2 elements , 0x8 bytes

+0x000 Flink : Ptr32 to

+0x004 Blink : Ptr32 to

+0x090 QuotaUsage : (3 elements) Uint4B

+0x09c QuotaPeak : (3 elements) Uint4B

108 +0x0a8 CommitCharge : Uint4B

+0x0ac PeakVirtualSize : Uint4B

+0x0b0 VirtualSize : Uint4B

+0x0b4 SessionProcessLinks : struct _LIST_ENTRY , 2 elements , 0x8 bytes

+0x000 Flink : Ptr32 to

113 +0x004 Blink : Ptr32 to

+0x0bc DebugPort : Ptr32 to

73

+0x0c0 ExceptionPort : Ptr32 to

+0x0c4 ObjectTable : Ptr32 to

+0x0c8 Token : struct _EX_FAST_REF , 3 elements , 0x4 bytes

118 +0x000 Object : Ptr32 to

+0x000 RefCnt : Bitfield Pos 0, 3 Bits

+0x000 Value : Uint4B

+0x0cc WorkingSetLock : struct _FAST_MUTEX , 5 elements , 0x20 bytes

+0x000 Count : Int4B

123 +0x004 Owner : Ptr32 to

+0x008 Contention : Uint4B

+0x00c Event : struct _KEVENT , 1 elements , 0x10 bytes

+0x000 Header : struct _DISPATCHER_HEADER , 6 elements , 0x10 bytes

+0x000 Type : UChar

128 +0x001 Absolute : UChar

+0x002 Size : UChar

+0x003 Inserted : UChar

+0x004 SignalState : Int4B

+0x008 WaitListHead : struct _LIST_ENTRY , 2 elements , 0x8 bytes

133 +0x000 Flink : Ptr32 to

+0x004 Blink : Ptr32 to

+0x01c OldIrql : Uint4B

+0x0ec WorkingSetPage : Uint4B

+0x0f0 AddressCreationLock : struct _FAST_MUTEX , 5 elements , 0x20 bytes

138 +0x000 Count : Int4B

+0x004 Owner : Ptr32 to

+0x008 Contention : Uint4B

+0x00c Event : struct _KEVENT , 1 elements , 0x10 bytes

+0x000 Header : struct _DISPATCHER_HEADER , 6 elements , 0x10 bytes

143 +0x000 Type : UChar

+0x001 Absolute : UChar

+0x002 Size : UChar

+0x003 Inserted : UChar

+0x004 SignalState : Int4B

148 +0x008 WaitListHead : struct _LIST_ENTRY , 2 elements , 0x8 bytes

+0x000 Flink : Ptr32 to

+0x004 Blink : Ptr32 to

+0x01c OldIrql : Uint4B

+0x110 HyperSpaceLock : Uint4B

153 +0x114 ForkInProgress : Ptr32 to

+0x118 HardwareTrigger : Uint4B

+0x11c VadRoot : Ptr32 to

+0x120 VadHint : Ptr32 to

+0x124 CloneRoot : Ptr32 to

158 +0x128 NumberOfPrivatePages : Uint4B

+0x12c NumberOfLockedPages : Uint4B

+0x130 Win32Process : Ptr32 to

+0x134 Job : Ptr32 to

+0x138 SectionObject : Ptr32 to

163 +0x13c SectionBaseAddress : Ptr32 to

+0x140 QuotaBlock : Ptr32 to

+0x144 WorkingSetWatch : Ptr32 to

+0x148 Win32WindowStation : Ptr32 to

+0x14c InheritedFromUniqueProcessId : Ptr32 to

168 +0x150 LdtInformation : Ptr32 to

+0x154 VadFreeHint : Ptr32 to

+0x158 VdmObjects : Ptr32 to

+0x15c DeviceMap : Ptr32 to

+0x160 PhysicalVadList : struct _LIST_ENTRY , 2 elements , 0x8 bytes

173 +0x000 Flink : Ptr32 to

+0x004 Blink : Ptr32 to

74

+0x168 PageDirectoryPte : struct _HARDWARE_PTE_X86 , 13 elements , 0x4 bytes

+0x000 Valid : Bitfield Pos 0, 1 Bit

+0x000 Write : Bitfield Pos 1, 1 Bit

178 +0x000 Owner : Bitfield Pos 2, 1 Bit

+0x000 WriteThrough : Bitfield Pos 3, 1 Bit

+0x000 CacheDisable : Bitfield Pos 4, 1 Bit

+0x000 Accessed : Bitfield Pos 5, 1 Bit

+0x000 Dirty : Bitfield Pos 6, 1 Bit

183 +0x000 LargePage : Bitfield Pos 7, 1 Bit

+0x000 Global : Bitfield Pos 8, 1 Bit

+0x000 CopyOnWrite : Bitfield Pos 9, 1 Bit

+0x000 Prototype : Bitfield Pos 10, 1 Bit

+0x000 reserved : Bitfield Pos 11, 1 Bit

188 +0x000 PageFrameNumber : Bitfield Pos 12, 20 Bits

+0x168 Filler : Uint8B

+0x170 Session : Ptr32 to

+0x174 ImageFileName : (16 elements) UChar

+0x184 JobLinks : struct _LIST_ENTRY , 2 elements , 0x8 bytes

193 +0x000 Flink : Ptr32 to

+0x004 Blink : Ptr32 to

+0x18c LockedPagesList : Ptr32 to

+0x190 ThreadListHead : struct _LIST_ENTRY , 2 elements , 0x8 bytes

+0x000 Flink : Ptr32 to

198 +0x004 Blink : Ptr32 to

+0x198 SecurityPort : Ptr32 to

+0x19c PaeTop : Ptr32 to

+0x1a0 ActiveThreads : Uint4B

+0x1a4 GrantedAccess : Uint4B

203 +0x1a8 DefaultHardErrorProcessing : Uint4B

+0x1ac LastThreadExitStatus : Int4B

+0x1b0 Peb : Ptr32 to

+0x1b4 PrefetchTrace : struct _EX_FAST_REF , 3 elements , 0x4 bytes

+0x000 Object : Ptr32 to

208 +0x000 RefCnt : Bitfield Pos 0, 3 Bits

+0x000 Value : Uint4B

+0x1b8 ReadOperationCount : union _LARGE_INTEGER , 4 elements , 0x8 bytes

+0x000 LowPart : Uint4B

+0x004 HighPart : Int4B

213 +0x000 u : struct __unnamed , 2 elements , 0x8 bytes

+0x000 LowPart : Uint4B

+0x004 HighPart : Int4B

+0x000 QuadPart : Int8B

+0x1c0 WriteOperationCount : union _LARGE_INTEGER , 4 elements , 0x8 bytes

218 +0x000 LowPart : Uint4B

+0x004 HighPart : Int4B

+0x000 u : struct __unnamed , 2 elements , 0x8 bytes

+0x000 LowPart : Uint4B

+0x004 HighPart : Int4B

223 +0x000 QuadPart : Int8B

+0x1c8 OtherOperationCount : union _LARGE_INTEGER , 4 elements , 0x8 bytes

+0x000 LowPart : Uint4B

+0x004 HighPart : Int4B

+0x000 u : struct __unnamed , 2 elements , 0x8 bytes

228 +0x000 LowPart : Uint4B

+0x004 HighPart : Int4B

+0x000 QuadPart : Int8B

+0x1d0 ReadTransferCount : union _LARGE_INTEGER , 4 elements , 0x8 bytes

+0x000 LowPart : Uint4B

233 +0x004 HighPart : Int4B

+0x000 u : struct __unnamed , 2 elements , 0x8 bytes

75

+0x000 LowPart : Uint4B

+0x004 HighPart : Int4B

+0x000 QuadPart : Int8B

238 +0x1d8 WriteTransferCount : union _LARGE_INTEGER , 4 elements , 0x8 bytes

+0x000 LowPart : Uint4B

+0x004 HighPart : Int4B

+0x000 u : struct __unnamed , 2 elements , 0x8 bytes

+0x000 LowPart : Uint4B

243 +0x004 HighPart : Int4B

+0x000 QuadPart : Int8B

+0x1e0 OtherTransferCount : union _LARGE_INTEGER , 4 elements , 0x8 bytes

+0x000 LowPart : Uint4B

+0x004 HighPart : Int4B

248 +0x000 u : struct __unnamed , 2 elements , 0x8 bytes

+0x000 LowPart : Uint4B

+0x004 HighPart : Int4B

+0x000 QuadPart : Int8B

+0x1e8 CommitChargeLimit : Uint4B

253 +0x1ec CommitChargePeak : Uint4B

+0x1f0 AweInfo : Ptr32 to

+0x1f4 SeAuditProcessCreationInfo : struct _SE_AUDIT_PROCESS_CREATION_INFO , 1 elements , 0x4 bytes

+0x000 ImageFileName : Ptr32 to

+0x1f8 Vm : struct _MMSUPPORT , 14 elements , 0x40 bytes

258 +0x000 LastTrimTime : union _LARGE_INTEGER , 4 elements , 0x8 bytes

+0x000 LowPart : Uint4B

+0x004 HighPart : Int4B

+0x000 u : struct __unnamed , 2 elements , 0x8 bytes

+0x000 LowPart : Uint4B

263 +0x004 HighPart : Int4B

+0x000 QuadPart : Int8B

+0x008 Flags : struct _MMSUPPORT_FLAGS , 9 elements , 0x4 bytes

+0x000 SessionSpace : Bitfield Pos 0, 1 Bit

+0x000 BeingTrimmed : Bitfield Pos 1, 1 Bit

268 +0x000 SessionLeader : Bitfield Pos 2, 1 Bit

+0x000 TrimHard : Bitfield Pos 3, 1 Bit

+0x000 WorkingSetHard : Bitfield Pos 4, 1 Bit

+0x000 AddressSpaceBeingDeleted : Bitfield Pos 5, 1 Bit

+0x000 Available : Bitfield Pos 6, 10 Bits

273 +0x000 AllowWorkingSetAdjustment : Bitfield Pos 16, 8 Bits

+0x000 MemoryPriority : Bitfield Pos 24, 8 Bits

+0x00c PageFaultCount : Uint4B

+0x010 PeakWorkingSetSize : Uint4B

+0x014 WorkingSetSize : Uint4B

278 +0x018 MinimumWorkingSetSize : Uint4B

+0x01c MaximumWorkingSetSize : Uint4B

+0x020 VmWorkingSetList : Ptr32 to

+0x024 WorkingSetExpansionLinks : struct _LIST_ENTRY , 2 elements , 0x8 bytes

+0x000 Flink : Ptr32 to

283 +0x004 Blink : Ptr32 to

+0x02c Claim : Uint4B

+0x030 NextEstimationSlot : Uint4B

+0x034 NextAgingSlot : Uint4B

+0x038 EstimatedAvailable : Uint4B

288 +0x03c GrowthSinceLastEstimate : Uint4B

+0x238 LastFaultCount : Uint4B

+0x23c ModifiedPageCount : Uint4B

+0x240 NumberOfVads : Uint4B

+0x244 JobStatus : Uint4B

293 +0x248 Flags : Uint4B

+0x248 CreateReported : Bitfield Pos 0, 1 Bit

76

+0x248 NoDebugInherit : Bitfield Pos 1, 1 Bit

+0x248 ProcessExiting : Bitfield Pos 2, 1 Bit

+0x248 ProcessDelete : Bitfield Pos 3, 1 Bit

298 +0x248 Wow64SplitPages : Bitfield Pos 4, 1 Bit

+0x248 VmDeleted : Bitfield Pos 5, 1 Bit

+0x248 OutswapEnabled : Bitfield Pos 6, 1 Bit

+0x248 Outswapped : Bitfield Pos 7, 1 Bit

+0x248 ForkFailed : Bitfield Pos 8, 1 Bit

303 +0x248 HasPhysicalVad : Bitfield Pos 9, 1 Bit

+0x248 AddressSpaceInitialized : Bitfield Pos 10, 2 Bits

+0x248 SetTimerResolution : Bitfield Pos 12, 1 Bit

+0x248 BreakOnTermination : Bitfield Pos 13, 1 Bit

+0x248 SessionCreationUnderway : Bitfield Pos 14, 1 Bit

308 +0x248 WriteWatch : Bitfield Pos 15, 1 Bit

+0x248 ProcessInSession : Bitfield Pos 16, 1 Bit

+0x248 OverrideAddressSpace : Bitfield Pos 17, 1 Bit

+0x248 HasAddressSpace : Bitfield Pos 18, 1 Bit

+0x248 LaunchPrefetched : Bitfield Pos 19, 1 Bit

313 +0x248 InjectInpageErrors : Bitfield Pos 20, 1 Bit

+0x248 VmTopDown : Bitfield Pos 21, 1 Bit

+0x248 Unused3 : Bitfield Pos 22, 1 Bit

+0x248 Unused4 : Bitfield Pos 23, 1 Bit

+0x248 VdmAllowed : Bitfield Pos 24, 1 Bit

318 +0x248 Unused : Bitfield Pos 25, 5 Bits

+0x248 Unused1 : Bitfield Pos 30, 1 Bit

+0x248 Unused2 : Bitfield Pos 31, 1 Bit

+0x24c ExitStatus : Int4B

+0x250 NextPageColor : Uint2B

323 +0x252 SubSystemMinorVersion : UChar

+0x253 SubSystemMajorVersion : UChar

+0x252 SubSystemVersion : Uint2B

+0x254 PriorityClass : UChar

+0x255 WorkingSetAcquiredUnsafe : UChar

328 +0x258 Cookie : Uint4B

kd > dt -b -v _PEB

ntdll!_PEB

struct _PEB , 65 elements , 0x210 bytes

+0x000 InheritedAddressSpace : UChar

333 +0x001 ReadImageFileExecOptions : UChar

+0x002 BeingDebugged : UChar

+0x003 SpareBool : UChar

+0x004 Mutant : Ptr32 to

+0x008 ImageBaseAddress : Ptr32 to

338 +0x00c Ldr : Ptr32 to

+0x010 ProcessParameters : Ptr32 to

+0x014 SubSystemData : Ptr32 to

+0x018 ProcessHeap : Ptr32 to

+0x01c FastPebLock : Ptr32 to

343 +0x020 FastPebLockRoutine : Ptr32 to

+0x024 FastPebUnlockRoutine : Ptr32 to

+0x028 EnvironmentUpdateCount : Uint4B

+0x02c KernelCallbackTable : Ptr32 to

+0x030 SystemReserved : (1 elements) Uint4B

348 +0x034 AtlThunkSListPtr32 : Uint4B

+0x038 FreeList : Ptr32 to

+0x03c TlsExpansionCounter : Uint4B

+0x040 TlsBitmap : Ptr32 to

77

B.2 KPCR Structure

Listing B.2: Appendix2/kpcr.txt

kd > dt _KPCR

nt!_KPCR

+0x000 NtTib : _NT_TIB

4 +0x01c SelfPcr : Ptr32 _KPCR

+0x020 Prcb : Ptr32 _KPRCB

+0x024 Irql : UChar

+0x028 IRR : Uint4B

+0x02c IrrActive : Uint4B

9 +0x030 IDR : Uint4B

+0x034 KdVersionBlock : Ptr32 Void

+0x038 IDT : Ptr32 _KIDTENTRY

+0x03c GDT : Ptr32 _KGDTENTRY

+0x040 TSS : Ptr32 _KTSS

14 +0x044 MajorVersion : Uint2B

+0x046 MinorVersion : Uint2B

+0x048 SetMember : Uint4B

+0x04c StallScaleFactor : Uint4B

+0x050 DebugActive : UChar

19 +0x051 Number : UChar

+0x052 Spare0 : UChar

+0x053 SecondLevelCacheAssociativity : UChar

+0x054 VdmAlert : Uint4B

+0x058 KernelReserved : [14] Uint4B

24 +0x090 SecondLevelCacheSize : Uint4B

+0x094 HalReserved : [16] Uint4B

+0x0d4 InterruptMode : Uint4B

+0x0d8 Spare1 : UChar

+0x0dc KernelReserved2 : [17] Uint4B

29 +0x120 PrcbData : _KPRCB

B.3 DBGKD GET VERSION64 Structure

Listing B.3: Appendix2/dbgkd.txt

1 kd > dt _DBGKD_GET_VERSION64

nt!_DBGKD_GET_VERSION64

+0x000 MajorVersion : Uint2B

+0x002 MinorVersion : Uint2B

+0x004 ProtocolVersion : Uint2B

6 +0x006 Flags : Uint2B

+0x008 MachineType : Uint2B

+0x00a MaxPacketType : UChar

+0x00b MaxStateChange : UChar

+0x00c MaxManipulate : UChar

11 +0x00d Simulation : UChar

+0x00e Unused : [1] Uint2B

+0x010 KernBase : Uint8B

+0x018 PsLoadedModuleList : Uint8B

+0x020 DebuggerDataList : Uint8B

78

B.4 KDDEBUGGER DATA64 Structure

Listing B.4: Appendix2/kddebuggerdata64.txt

typedef struct _KDDEBUGGER_DATA64

{

DBGKD_DEBUG_DATA_HEADER64 Header;

ULONG64 KernBase;

5 GCC_ULONG64 BreakpointWithStatus;

ULONG64 SavedContext;

USHORT ThCallbackStack;

USHORT NextCallback;

USHORT FramePointer;

10 USHORT PaeEnabled :1;

GCC_ULONG64 KiCallUserMode;

GCC_ULONG64 KeUserCallbackDispatcher;

GCC_ULONG64 PsLoadedModuleList;

GCC_ULONG64 PsActiveProcessHead;

15 GCC_ULONG64 PspCidTable;

GCC_ULONG64 ExpSystemResourcesList;

GCC_ULONG64 ExpPagedPoolDescriptor;

GCC_ULONG64 ExpNumberOfPagedPools ;

GCC_ULONG64 KeTimeIncrement;

20 GCC_ULONG64 KeBugCheckCallbackListHead;

GCC_ULONG64 KiBugcheckData;

GCC_ULONG64 IopErrorLogListHead;

GCC_ULONG64 ObpRootDirectoryObject;

GCC_ULONG64 ObpTypeObjectType;

25 GCC_ULONG64 MmSystemCacheStart;

GCC_ULONG64 MmSystemCacheEnd ;

GCC_ULONG64 MmSystemCacheWs;

GCC_ULONG64 MmPfnDatabase;

GCC_ULONG64 MmSystemPtesStart;

30 GCC_ULONG64 MmSystemPtesEnd;

GCC_ULONG64 MmSubsectionBase ;

GCC_ULONG64 MmNumberOfPagingFiles ;

GCC_ULONG64 MmLowestPhysicalPage;

GCC_ULONG64 MmHighestPhysicalPage ;

35 GCC_ULONG64 MmNumberOfPhysicalPages;

GCC_ULONG64 MmMaximumNonPagedPoolInBytes;

GCC_ULONG64 MmNonPagedSystemStart ;

GCC_ULONG64 MmNonPagedPoolStart;

GCC_ULONG64 MmNonPagedPoolEnd;

40 GCC_ULONG64 MmPagedPoolStart ;

GCC_ULONG64 MmPagedPoolEnd;

GCC_ULONG64 MmPagedPoolInformation;

ULONG64 MmPageSize;

GCC_ULONG64 MmSizeOfPagedPoolInBytes;

45 GCC_ULONG64 MmTotalCommitLimit;

GCC_ULONG64 MmTotalCommittedPages ;

GCC_ULONG64 MmSharedCommit;

GCC_ULONG64 MmDriverCommit;

GCC_ULONG64 MmProcessCommit;

50 GCC_ULONG64 MmPagedPoolCommit;

GCC_ULONG64 MmExtendedCommit ;

GCC_ULONG64 MmZeroedPageListHead;

GCC_ULONG64 MmFreePageListHead;

GCC_ULONG64 MmStandbyPageListHead ;

55 GCC_ULONG64 MmModifiedPageListHead;

79

GCC_ULONG64 MmModifiedNoWritePageListHead;

GCC_ULONG64 MmAvailablePages ;

GCC_ULONG64 MmResidentAvailablePages;

GCC_ULONG64 PoolTrackTable;

60 GCC_ULONG64 NonPagedPoolDescriptor;

GCC_ULONG64 MmHighestUserAddress;

GCC_ULONG64 MmSystemRangeStart;

GCC_ULONG64 MmUserProbeAddress;

GCC_ULONG64 KdPrintCircularBuffer ;

65 GCC_ULONG64 KdPrintCircularBufferEnd;

GCC_ULONG64 KdPrintWritePointer;

GCC_ULONG64 KdPrintRolloverCount;

GCC_ULONG64 MmLoadedUserImageList ;

GCC_ULONG64 NtBuildLab;

70 GCC_ULONG64 KiNormalSystemCall;

GCC_ULONG64 KiProcessorBlock ;

GCC_ULONG64 MmUnloadedDrivers;

GCC_ULONG64 MmLastUnloadedDriver;

GCC_ULONG64 MmTriageActionTaken;

75 GCC_ULONG64 MmSpecialPoolTag ;

GCC_ULONG64 KernelVerifier;

GCC_ULONG64 MmVerifierData;

GCC_ULONG64 MmAllocatedNonPagedPool;

GCC_ULONG64 MmPeakCommitment ;

80 GCC_ULONG64 MmTotalCommitLimitMaximum;

GCC_ULONG64 CmNtCSDVersion;

GCC_ULONG64 MmPhysicalMemoryBlock ;

GCC_ULONG64 MmSessionBase;

GCC_ULONG64 MmSessionSize;

85 GCC_ULONG64 MmSystemParentTablePage;

GCC_ULONG64 MmVirtualTranslationBase;

USHORT OffsetKThreadNextProcessor;

USHORT OffsetKThreadTeb ;

USHORT OffsetKThreadKernelStack;

90 USHORT OffsetKThreadInitialStack;

USHORT OffsetKThreadApcProcess;

USHORT OffsetKThreadState;

USHORT OffsetKThreadBStore;

USHORT OffsetKThreadBStoreLimit;

95 USHORT SizeEProcess;

USHORT OffsetEprocessPeb;

USHORT OffsetEprocessParentCID;

USHORT OffsetEprocessDirectoryTableBase ;

USHORT SizePrcb;

100 USHORT OffsetPrcbDpcRoutine;

USHORT OffsetPrcbCurrentThread;

USHORT OffsetPrcbMhz;

USHORT OffsetPrcbCpuType;

USHORT OffsetPrcbVendorString;

105 USHORT OffsetPrcbProcStateContext;

USHORT OffsetPrcbNumber ;

USHORT SizeEThread;

GCC_ULONG64 KdPrintCircularBufferPtr;

GCC_ULONG64 KdPrintBufferSize;

110 GCC_ULONG64 KeLoaderBlock;

USHORT SizePcr;

USHORT OffsetPcrSelfPcr ;

USHORT OffsetPcrCurrentPrcb;

USHORT OffsetPcrContainedPrcb;

115 USHORT OffsetPcrInitialBStore;

80

USHORT OffsetPcrBStoreLimit;

USHORT OffsetPcrInitialStack ;

USHORT OffsetPcrStackLimit;

USHORT OffsetPrcbPcrPage;

120 USHORT OffsetPrcbProcStateSpecialReg;

USHORT GdtR0Code;

USHORT GdtR0Data;

USHORT GdtR0Pcr;

USHORT GdtR3Code;

125 USHORT GdtR3Data;

USHORT GdtR3Teb;

USHORT GdtLdt;

USHORT GdtTss;

USHORT Gdt64R3CmCode;

130 USHORT Gdt64R3CmTeb;

GCC_ULONG64 IopNumTriageDumpDataBlocks;

GCC_ULONG64 IopTriageDumpDataBlocks;

GCC_ULONG64 VfCrashDataBlock ;

} KDDEBUGGER_DATA64 , *PKDDEBUGGER_DATA64;

81

Appendix C. Building the Test Platform

This appendix gives a detailed description of how to build and configure the Xen

environment as described in this thesis. A Dell Latitude D630 with an Intel Core 2

Duo T7300 and 2 GB of memory is used to carry out experimentation.

C.1 Install Fedora 8

1. Install Fedora 8 with the software development tools option. Also, during in-

stallation disable ’IPv6’, the built-in firewall and SELinux.

2. Add /sbin and /usr/sbin to the path statement in .bash profile for root and

the configured user account.

3. Install dev86 tools from a root terminal with: yum install dev86

4. Install the network bridge utilities necessary for Xen with:

yum install bridge-utils

5. Disable tls with: mv /lib/tls /lib/tls.disabled

6. Remove nag about tls during boot with:

echo "hwcap 0 nosegneg" >> /etc/ld.so.conf

7. Update the dynamic linker with: ldconfig

C.2 Install Xen 3.1.4

1. Download the Xen 3.1.4 source code from the www.xen.org archives at

http://bits.xensource.com/oss-xen/release/3.1.4/xen-3.1.4.tar.gz

2. Unpack the gzipped tarball with: tar xzf xen-3.1.4.tar.gz

3. Change to the xen directory with: cd xen-3.1.4

4. Compile Xen with: make world

This will take some time and you must be connected to the Internet because

the Linux 2.6.18.8 kernel is downloaded.

5. Install Xen with: make install

82

6. Execute the install script with: ./install.sh

C.3 Configuring Xen Boot

1. Create the dependency file for the 2.6.18.8-xen kernel with:

/sbin/depmod 2.6.18.8-xen

2. Create the initrd image for 2.6.18.8-xen with:

/sbin/mkinitrd -v -f --with=aacraid --with=sd_mod --with=scsi_mod

--with=tun /boot/initrd-2.6.18.8-xen.img 2.6.18.8-xen

3. To the file /boot/grub/menu.lst add the following:

title Xen 3.1.4 / XenLinux 2.6.18.8

root(hd0,1)

kernel /xen-3.1.gz console=vga dom0_mem=512M

module /vmlinux-2.6.18.8-xen root=/dev/VolGroup00/LogVol00 \

ro console=tty0

module /initrd-2.6.18.8-xen.img

The boot menu will now contain the option to boot the Xen kernel. The Xen

kernel does not support the video card in the Dell D630 so upon initial boot the

graphical user interface will fail to come up. The operating system is able to configure

the generic VESA driver by choosing the default options in the recovery dialog. The

changes are made permanently in the /etc/X11/xorg.conf file and the problem

should not reappear.

83

C.4 XenAccess

XenAccess can be obtained from its Google code repository at

http://xenaccess.googlecode.com/svn/trunk. However, this version does not incorpo-

rate my modifications which were made to revision 130. This version can be checked-

out from the Fedora 8 command line using the command:

svn checkout -r 130 <XenAccess URL> <destination folder>

Requests for the modified source code used in this research should be directed to Dr.

Barry Mullins, barry.mullins@afit.edu.

1. Unpack the gziped tarball with: tar xzf filename.tar.gz

2. Change to the libxa directory.

3. Compile the library with: make

4. Install the library with: make install

In the source code for this research modifications were made to many library files, but

the pagel.c file in the xenaccess directory contains the bulk of the additions made

by the author. Additionally, the examples folder contains the test programs.

C.5 Creating a HVM DomU for Xen

This section describes in detail how to create a virtual machine running HVM

for use with Xen. Creation of the configuration file and virtual disk files is the same

regardless of the guest OS to be installed.

1. Creating a virtual disk file for the VM named imagename.img and 10GB in size:

dd if=/dev/zero of=imagename.img bs=1k seek=10240k count=1

2. An example Xen HVM configuration file can be found in /etc/xen/ after in-

stallation

84

Bibliography

AA06. Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. In ASPLOS-XII: Proceedings of the
12th international conference on Architectural support for programming
languages and operating systems, pages 2–13, New York, NY, USA,
2006. ACM.

ADC05. Tim Abels, Puneet Dhawan, and Balasubramanian Chandrasekaran. An
Overview of Xen Virtualization, 2005. Available from: http://www.
dell.com/downloads/global/power/ps3q05-20050191-Abels.pdf.

AMD08. Inc. Advanced Micro Devices. AMD64 Architecture Programmer’s
Manual, 2008. Available from: http:
//developer.intel.com/products/processor/manuals/index.htm.

App08. Net Applications. Operating system market share, 2008. Available
from: http://marketshare.hitslink.com/
operating-system-market-share.aspx?qprid=8.

Bar. Edgar Barbosa. Finding some non-exported kernel variables in windows
xp. Available from:
http://www.rootkit.com/vault/Opc0de/GetVarXP.pdf.

BDF+03. Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and
the art of virtualization. SIGOPS Oper. Syst. Rev., 37(5):164–177, 2003.

C0l. C0ldCrow. Windows kernelmode, keyboard independent keylogger.
Available from: http://www.awarenetwork.org/etc/beta/?x=1.

Car06. Harlan Carvey. Windows incident response blog. os detection,
explained, 2006. Available from: http://windowsir.blogspot.com/
2006/09/os-detection-explained.html.

Car07. Harlan Carvey. Windows Forensic Analysis. Syngress, 2007.

CC03. Suresh N. Chari and Pau-Chen Cheng. Bluebox: A policy-driven,
host-based intrusion detection system. ACM Trans. Inf. Syst. Secur.,
6(2):173–200, 2003.

Chu06. Simon P. Chung. On the (im)practicality of system-call-based ids, 2006.
Available from:
http://www.cs.utexas.edu/users/phchung/strike.ppt.

CN01. P.M. Chen and B.D. Noble. When virtual is better than real [operating
system relocation to virtual machines]. Hot Topics in Operating
Systems, 2001. Proceedings of the Eighth Workshop on, pages 133–138,
May 2001.

85

Cor08a. Intel Corporation. Intel 64 and ia-32 architectures software developer’s
manual, 2008. Available from: http:
//developer.intel.com/products/processor/manuals/index.htm.

Cor08b. Intel Corporation. Intel 64 and ia-32 architectures software developer’s
manual, 2008. Available from: http:
//developer.intel.com/products/processor/manuals/index.htm.

Cor08c. Intel Corporation. Intel 64 and ia-32 architectures software developer’s
manual, 2008. Available from: http:
//developer.intel.com/products/processor/manuals/index.htm.

Cor08d. Microsoft Corporation. Microsoft portable executable and common
object file format specification, 2008. Available from: http://www.
microsoft.com/whdc/system/platform/firmware/PECOFF.mspx.

Cor08e. Microsoft Corporation. VS VERSIONINFO Structure, 2008. Available
from: http://msdn.microsoft.com/en-us/library/ms647001.aspx.

CS09. Inc. Citrix Systems. Xen overview, 2009. Available from:
http://www.xen.org/about/.

DPB99. Prasad Dabak, Sandeep Phadke, and Milind Borate. Undocumented
Windows NT. John Wiley & Sons, 1999.

FKF+03. H.H. Feng, O.M. Kolesnikov, P. Fogla, W. Lee, and Weibo Gong.
Anomaly detection using call stack information. Security and Privacy,
2003. Proceedings. 2003 Symposium on, pages 62–75, May 2003.

FS08. Christof Fetzer and Martin Süßkraut. Switchblade: enforcing dynamic
personalized system call models. SIGOPS Oper. Syst. Rev.,
42(4):273–286, 2008.

Gar03. Tal Garfinkel. Traps and pitfalls: Practical problems in in system call
interposition based security tools. In Proc. Network and Distributed
Systems Security Symposium, February 2003.

GAWF07. Tal Garfinkel, Keith Adams, Andrew Warfield, and Jason Franklin.
Compatibility is Not Transparency: VMM Detection Myths and
Realities. In Proceedings of the 11th Workshop on Hot Topics in
Operating Systems (HotOS-XI), May 2007.

GR03. Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection
based architecture for intrusion detection. In Proc. Network and
Distributed Systems Security Symposium, February 2003.

HB05. Greg Hoglund and Jamie Butler. Rootkits: Subverting the Windows
Kernel. Addison-Wesley Professional, 2005.

HFS98. Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji. Intrusion
detection using sequences of system calls. J. Comput. Secur.,
6(3):151–180, 1998.

86

Int06. Intox. Agony Ring0 Rootkit, 2006. Available from:
http://www.opensc.ws/c-c/1682-agony-ring0-rootkit.html.

Ion. Alex Ionescu. Getting kernel variables from kdversionblock, part 2.
Available from: http://www.rootkit.com/newsread.php?newsid=153.

JADAD06. Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Antfarm: Tracking processes in a virtual machine
environment. In Proceedings of the USENIX 2006 Annual Technical
Conference (USENIX ’06), Boston, MA, June 2006.

JADAD08. Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. Vmm-based hidden process detection and
identification using lycosid. In VEE ’08: Proceedings of the fourth ACM
SIGPLAN/SIGOPS international conference on Virtual execution
environments, pages 91–100, New York, NY, USA, 2008. ACM.

JFMA04. Nick L. Petroni Jr., Timothy Fraser, Jesus Molina, and William A.
Arbaugh. Copilot - a coprocessor-based kernel runtime integrity
monitor. In Proceedings of the 13th USENIX Security Symposium, pages
179–194, San Diego, CA, August 2004.

Jiu08. Jiurl. JiurlPortHide Source Code. Programmers United Develop Net.,
2008. Available from: http://www.pudn.com/downloads114/
sourcecode/windows/system/detail481865.html.

Jon07. Stephen T. Jones. Implicit Operating System Awareness in a Virtual
Machine Monitor. PhD thesis, University of Wisconsin – Madison, April
2007.

JWX07. Xuxian Jiang, Xinyuan Wang, and Dongyan Xu. Stealthy malware
detection through vmm-based ”out-of-the-box” semantic view
reconstruction. In CCS ’07: Proceedings of the 14th ACM conference on
Computer and communications security, pages 128–138, New York, NY,
USA, 2007. ACM.

KS07. Aditya Kapoor and Ahmed Sallam. White paper: Rootkits part 2: A
technical primer, 2007. Available from: http://www.mcafee.com/us/
local_content/white_papers/wp_rootkits_0407.pdf.

Lin. Mission Critical Linux. Crash core analysis suite. Available from:
http://oss.missioncriticallinux.com/projects/crash/.

McGa. Roland McGrath. strace. Available from:
http://sourceforge.net/projects/strace/.

McGb. Roland McGrath. utrace. Available from:
http://people.redhat.com/roland/utrace/.

Mot07. Stephen Mott. Exploring hardware-based primitives to enhance parallel
security monitoring in a novel computing architecture. Master’s thesis,

87

Air Force Institute of Technology, Wright-Patterson Air Force Base,
Ohio, March 2007.

MY07. Michael Myers and Stephen Youndt. An introduction to
hardware-assisted virtual machine (hvm) rootkits, 2007. Available from:
http://www.crucialsecurity.com/documents/hvmrootkits.pdf.

Pag08. Brett Pagel. Email communication with bryan payne, 2008.

Pay07. Bryan Payne. Xenaccess library, 2007. Available from:
http://www.xenaccess.org.

PCL07. Bryan D. Payne, Martim Carbone, and Wenke Lee. Secure and flexible
monitoring of virtual machines. In Proceedings of the 23rd Annual
Computer Security Applications Conference (ACSAC 2007), pages
385–397, December 2007.

PCSL08. Bryan D. Payne, Martim Carbone, Monirul Sharif, and Wenke Lee.
Lares: An architecture for secure active monitoring using virtualization.
In Proceedings of the IEEE Symposium on Security and Privacy, pages
233–247, May 2008.

PFH+05. I. Pratt, Fraser, Hand, Limpach, Warfield, Magenheimer, Nakajima, and
Mallick. Xen 3.0 and the art of virtualization. In Proceedings of the
Linux Symposium: Volume 2, pages 65–78, Ottawa, Ontario, Canada,
2005. Linux Symposium, Inc.

Pro03. N. Provos. Improving host security with system call policies. 12th
USENIX Security Symposium, pages 257–271, 2003 2003. PT: C; CT:
12th USENIX Security Symposium; CY: 4-8 Aug. 2003; CL:
Washington, DC, USA; SP: USENIX; PV: Berkeley, CA, USA; NR: 39.

Pro09. The Metasploit Project. Windows system call table, 2009. Available
from: http://www.metasploit.com/users/opcode/syscalls.html.

PSJ08. Chetan Parampalli, R. Sekar, and Rob Johnson. A practical mimicry
attack against powerful system-call monitors. In ASIACCS ’08:
Proceedings of the 2008 ACM symposium on Information, computer and
communications security, pages 156–167, New York, NY, USA, 2008.
ACM.

Rie06. Chris Ries. Inside windows rootkits, 2006. Available from: http:
//www.vigilantminds.com/files/inside_windows_rootkits.pdf.

RS04. Mark E. Russinovich and David A. Solomon. Microsoft Windows
Internals, Fourth Edition: Microsoft Windows Server(TM) 2003,
Windows XP, and Windows 2000 (Pro-Developer). Microsoft Press,
Redmond, WA, USA, 2004.

88

Rut06. Joanna Rutkowska. Introducing stealth malware taxonomy, 2006.
Available from:
http://invisiblethings.org/papers/malware-taxonomy.pdf.

Rut07a. Joanna Rutkowska. Beyond the cpu: Defeating hardware based ram
acquisition tools (part i: Amd case), 2007. Available from:
http://invisiblethings.org/papers/

cheating-hardware-memory-acquisition-updated.ppt.

Rut07b. Joanna Rutkowska. Virtualization - the other side of the coin, 2007.
Available from: http:
//www.invisiblethings.org/papers/NLUUG-virtualization.ppt.

Rut08. Joanna Rutkowska. Security Challenges in Virtualized Environments,
2008. Available from: http://invisiblethings.org/papers.html.

SBDB01. R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast
automaton-based method for detecting anomalous program behaviors.
Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE
Symposium on, pages 144–155, 2001.

Sec08. Packet Storm Security. Packet storm security exploit database, 2008.
Available from: http://packetstormsecurity.nl/assess/exploits/.

Sou. Inc. Sourcefire. Snort. Available from: http://www.snort.org.

SYfZ+05. Yue Shen, Fei Yu, Ling fen Zhang, Ji yao An, and Miao liang Zhu. An
intrusion detection system based on system call. Internet, 2005.The
First IEEE and IFIP International Conference in Central Asia on,
pages 159–184, 26-29 Sept. 2005.

Sym08. Symantec. Symantec virus definitions, 2008. Available from: http://
www.symantec.com/business/security_response/definitions.jsp.

SZ03. Ed Skoudis and Lenny Zeltser. Malware: Fighting Malicious Code.
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.

UNR+05. R. Uhlig, G. Neiger, D. Rodgers, A.L. Santoni, F.C.M. Martins, A.V.
Anderson, S.M. Bennett, A. Kagi, F.H. Leung, and L. Smith. Intel
virtualization technology. Computer, 38(5):48–56, May 2005.

vH08. William von Hagen. Professional Xen Virtualization. Wrox Press, 2008.

Wat07. Robert N. M. Watson. Exploiting concurrency vulnerabilities in system
call wrappers. In WOOT ’07: Proceedings of the first USENIX
workshop on Offensive Technologies, pages 1–8, Berkeley, CA, USA,
2007. USENIX Association.

WD01. D. Wagner and R. Dean. Intrusion detection via static analysis.
Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE
Symposium on, pages 156–168, 2001.

89

Wil05. Paul D. Williams. CuPIDS: Increasing Information System Security
through the Use of Dedicated Co-processing. PhD thesis, Purdue, July
2005.

WS02. David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion
detection systems. In CCS ’02: Proceedings of the 9th ACM conference
on Computer and communications security, pages 255–264, New York,
NY, USA, 2002. ACM.

YA04. M.M. Yasin and A.A. Awan. A study of host-based ids using system
calls. Networking and Communication, 2004. INCC 204. International
Conference on, pages 36–41, 11-13 June 2004.

YXS+05. Fei Yu, Cheng Xu, Yue Shen, Ji yao An, and Lin feng Zhang. Intrusion
detection based on system call finite-state automation machine.
Industrial Technology, 2005. ICIT 2005. IEEE International Conference
on, pages 63–68, 14-17 Dec. 2005.

Zov06. Dino A. Dai Zovi. Hardware virtualization rootkits, 2006. Available
from: http:
//www.theta44.org/software/HVM_Rootkits_ddz_bh-usa-06.pdf.

90

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

24–02–2009 Master’s Thesis Jul 2007 — Mar 2009

Automated Virtual Machine Introspection
for Host-Based Intrusion Detection

Brett A. Pagel, Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT/GCE/ENG/09-07

N/A

Approval for public release; distribution is unlimited.

This thesis examines techniques to automate configuration of an intrusion detection system utilizing hardware-assisted virtualization. These

techniques are used to detect the version of a running guest operating system, automatically configure version-specific operating system

information needed by the introspection library, and to locate and monitor important operating system data structures. This research

simplifies introspection library configuration and is a step toward operating system independent introspection. An operating system

detection algorithm and Windows virtual machine system service dispatch table monitor are implemented using the Xen hypervisor and a

modified version of the XenAccess library. All detection and monitoring is implemented from the Xen management domain. Results of the

operating system detection are used to initialize the XenAccess library. Library initialization time and kernel symbol retrieval are compared

to the standard library. The algorithm is evaluated using nine versions of the Windows operating system. The system service dispatch table

monitor is evaluated using the Agony and ProAgent rootkits. The automation techniques successfully detect the operating system and

system service dispatch table hooks for the nine Windows versions tested. The modified XenAccess library exhibits an average initialization

speedup of 1.9. Kernel symbol lookup is 10 times faster, on average. The hook detector is able to detect all hooks used by both rookits.

operating systems, intrusion detection, computer viruses

U U U UU 105

Dr. Barry Mullins

(937) 255–3636, ext 7979; barry.mullins@afit.edu

